Sums-of-squares and module lattice isomorphisms

Alexandre Wallet, PQ Shield Mathematics for PQC Workshop, Budapest, 5-9/08/2024

Based on joint works with C. Chevignard, T. Espitau, G. Mureau, A. Pellet—Mary, H. Pliatsok and PA. Fouque
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The Lattice Isomorphism Problem (LIP)
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The Lattice Isomorphism Problem (LIP)
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ot e Compute the o .
isometry O
Z(B) 0ZB) = (B

A computational version: Given B’ = OBU, with O orthogonal and U € GL,(Z), compute O or U.
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Proof of knowledge from LIP!
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. L. Ducas and W. Van Woerden, e.g. ePrint 2021/1332
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Proof of knowledge from LIP!

Zn

o o o o o o o o G — UtU
o o o o o o o o OU
O, U secret Prover
m = Um M <«——

. L. Ducas and W. Van Woerden, e.g. ePrint 2021/1332
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Proof of knowledge from LIP!

o o 0§ O o o ° o G — UtU
09 U secret Prover

Sample short X in Om + Z”
s=U"10%5=m-U"10'%

. L. Ducas and W. Van Woerden, e.g. ePrint 2021/1332
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Proof of knowledge from LIP! T
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: X

Sample short X in Om + Z" |

s=U"1'05=m-U"10% ——— § 1)OUse€Z'? 2)(m—s)G(m—s)is short?
Yes both: the verifier is convinced!

(in the end, we do not care so much for O)
. L. Ducas and W. Van Woerden, e.g. ePrint 2021/1332
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Proof of knowledge from LIP! T
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Observation:

~ ~ n
Sample short X in Ort + Z Any V € GL,(Z) such that V'V = G

s=U"10%=m =U"10% _> < allows to convince the verifier.

(Run the protocol with V instead of U).

. L. Ducas and W. Van Woerden, e.g. ePrint 2021/1332
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The Lattice Isomorphism Problem (LIP), with quadratic forms

B’ = OBU . ’
B'B’' = U'(B'B)U . % .
o o o o ® ® . . O . .
Z(B) 0ZB) =Z(B)

Two quadratic forms G, G’ are integrally congruent when G’ = U'GU for some congruence matrix U € GL,(2).

LIP®: Given B, G = B'B and G’ ~- G, find any congruence matrix U between G and G
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Hawk! and module lattices

Cyclotomic
module lattices

New context:
m=2°K=Q(,),and O := Z[{,] (for £, primitive).

—» Hawk «—— PoK — Signature

Identify Z"™ with 2. a free module lattice of rank 2.

Transpose becomes conjugate-transpose

Two forms G, G’ are O -congruent when G’ = U*GU for some congruence matrix U € GL,,(O).

(Free—)Mod—LIPI%: Given B, G = B*B and G’ ~6, G, find any congruence matrix U between G and GG

b https://hawk-sign.info, also ePrint 2022/1155 (L. Ducas, E. Postlethwaite, L. Pulles and W. Van Woerden. See also Wessel’s talk!
Alexandre Wallet, Maths for PQC workshop, 5/08/2024
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Hawk! and module lattices

Cyclotomic
module lattices

New context:
m=2°K=Q( ), and O := Z[{, ] (for {, primitive). Could be extended to many number fields K

—» Hawk «——— PoK — Signature

Identify Z™ with @%{, a free module lattice of rank 2. Don’t do it in rank 1!

Transpose becomes conjugate-transpose

Two forms G, G’ are O -congruent when G’ = U*GU for some congruence matrix U € GL,,(O).

(Free—)Mod—LIPI%: Given B, G = B*B and G’ ~6, G, find any congruence matrix U between G and GG

b https://hawk-sign.info, also ePrint 2022/1155 (L. Ducas, E. Postlethwaite, L. Pulles and W. Van Woerden. See also Wessel’s talk!
Alexandre Wallet, Maths for PQC workshop, 5/08/2024
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Why not using ideal lattices?

Say K = Q({), a cyclotomic field, the lattice is O.

We pick a private unit u € 0%, and publish the totally real element g = u*u.

Observation:
The congruence class is then the set of solutions of the relative norm equation

N(x) = g,

where N : K — F,N(a) = a*a.

Do not use ideal lattice because there are polynomial time algorithms1 for this!

(But this information is useful for the rest of the talk!)

. :Gentry-Szydlo’s algorithm for cyclotomic fields, Lenstra-Silverberg for general « CM-orders ».

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Forallo: K —» C
o(g) ER,

F is the field fixed by -*
(A totally real field)
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Now what’s the plan for today?

Target: ModLIP over Rank 2, Free, module |attices

I\/Iod—LIPI]z: Given B, G = B*B and G’ ~6, G, find any congruence matrix U between G and G

i Fermat’s two squares problem
) 4
) A heuristic polynomial time algorithm to
solve ModLIP over totally real number fields
) 4
3 Lagrange’s four square theorem, quaternions:

new reductions for ModLIP over CM-extension fields

) 4

/| State of affairs, perspectives, open questions

Alexandre Wallet, Maths for PQC workshop, 5/08/2024
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ModLIP in rank 2
over totally real fields

aka.

Fermat’s « two squares » theorem




The totally real version of ModLip

Now, we let K be a totally real number field (all embeddings map to R) and B =

I.\< ><I

Gub:

— :>I<
u x g 5B

* Zz+w2

80 *] x4yt ok

So we can recover the key if we can compute all sums of two squares giving g, g;.

Alexandre Wallet, Maths for PQC workshop, 5/08/2024
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The totally real version of ModLip

| | X Z
Now, we let K be a totally real number field (all embeddings map to R) and B = y W
* x> +y° %

Gpub — 50 ] — Y = B*B
*x g * 7%+ w?

So we can recover the key if we can compute all sums of two squares giving g, g;.

This links back to Fermat’s two squares theorem:

- A prime integer p is the sum of two integers squared if and only if p = 1 [4]. We need:
» The set of integers that can be written as the sums of two squares is: * An algorithmic version of it
. ) o * An extension to algebraic
52y :=1{2¢- || p»- || p* e, €N} integers
p=11[4] p=314]

Alexandre Wallet, Maths for PQC workshop, 5/08/2024
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Two classic proofs strategies

S,(Z) is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $,(Z).

Proof with geometry

2 =

We look at p = x4+ yz, that is x — y2 | pl.

Alexandre Wallet, Maths for PQC workshop, 5/08/2024 17



Two classic proofs strategies

S,(Z) is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $,(Z).

Proof with geometry

We look at p = x4 yz, that is x* = — y2 | pl. e o o e o o
1. —lisasquaremodp & p=1[4]. T S
Let u? = — 1[p].
2. Define Z(p) = {(a,b) € Z? : au—b =0][p]}. L ° o
Forv € Z(p), we have ||v||*> = a* + b? € pZ. © o o o o o o o o o
A basis is [1 O] ® e e o o o o o o o
u p

Alexandre Wallet, Maths for PQC workshop, 5/08/2024 18



Two classic proofs strategies

S,(Z) is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $,(Z).

0
Proof with geometry <5>
We look at p = x? +y2, that is x2 = —y2 | pl. e o o o .<1>. o o o
o o o o 3 o o [ o
1. —lisasquaremodp < p =1[4]. /
Let u? = — 1[p].
Minkowski’s theorem (in rank 2)
2. Define Z(p) = {(a,b) € Z* : au—b=0][p]}. Let & be a lattice of rank 2. The shortest vector in
Forv € Z(p), we have ||v||* = a* + b* € pZ. Z\{0} has length:
4
A basis is [i 2] And we have 1,(Z(p))* <2p. +—-— MWZ)* < — - det(2D).
T
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Two classic proofs strategies

S,(Z) is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $,(Z).

Proof with geometry

We look at p = x? 4+ yz, that is x* = — y2 [ pl. o o e o o

1. —lisasquaremodp < p =1[4]. S T
Letu® = —1[p].

2. Define Z(p) = {(a,b) € Z* : au—b=0[p]}. . ' ¢ o o

Forv € Z(p), we have ||v||* = a® + b* € pZ. JKY "" 6 o o

A b | | 1 O 2 ® ® o [ o

asisis - And we have 4,(Z(p))- <2p. o o e o o

L. 0
3. Any shortest vector gives a two-square sum for p. (Z(p) is similar to Z7)

Compute them with Gauss-Lagrange’s algorithm.

Alexandre Wallet, Maths for PQC workshop, 5/08/2024 20



Two classic proofs strategies

S,(Z) is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $,(Z).

Proof with arithmetic

In the Gauss integers Z]i], we have:
p=Nx+1iy) :=x+iy)(x —1y).

1. p factors < T? + 1 factors modulo p
Its discriminant is A = — 4. It is a square mod p iff —1 is
a square modulo p.

Alexandre Wallet, Maths for PQC workshop, 5/08/2024 21



Two classic proofs strategies

S,(Z) is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $,(Z).

Proof with arithmetic

In the Gauss integers Z]i], we have:
p=Nx+1iy) :=x+iy)(x —1y).

1. p factors & — 1 is a square modulo p.

2. ThenT?+ 1 = (T — a)(T — b) mod p.
Two conjugate primes above p. Oneis p = (p,i — a).

Alexandre Wallet, Maths for PQC workshop, 5/08/2024 292



Two classic proofs strategies L

S,(Z) is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $,(Z).

Proof with arithmetic

In the Gauss integers Z]i], we have:
p=Nx+1iy) :=x+iy)(x —1y).

1. p factors & — 1 is a square modulo p.

2. ThenT?+ 1 = (T — a)(T — b) mod p.
Two conjugate primes above p. Oneis p = (p,i — a).

3. Z]1] is Euclidean: compute gcd of p and 1 — a with
Euclidean division to obtain a generator x + 1y of p.

4. Do the same for p*, loop over all units in Z][i] to get all
generators.

Alexandre Wallet, Maths for PQC workshop, 5/08/2024 23



Two classic proofs strategies

S,(Z) is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $,(Z).

Proof with geometry Proof with arithmetic
We look at p = x? + y?, thatis x* = — y* [p]. In Z]i], we have p = N(x + iy) := (x + iy)(x — iy).
1. —lisasquaremodp & p =1[4]. 1. p factors & — 1 is a square modulo p.
Let u? = — 1[p].
2. Define Z(p) = {(a,b) € Z? : au—b =0][p]}. 2. Compute pZ][i] = pp* by factoring 7> + 1 mod p .
3. Any shortest vector gives a two-square sum for p. 3. Compute generators of p, p*.
Compute them with Gauss-Lagrange’s algorithm. Products of them and units give two-square sums.

Alexandre Wallet, Maths for PQC workshop, 5/08/2024 24



Two classic proofs strategies

S,(Z) is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $,(Z).

Proof with geometry Proof with arithmetic

2 —

We look at p = x? + y?, that is x —v?[p]. In Z]i], we have p = N(x + iy) := (x + iy)(x — iy).

1. —lisasquare modp < p = 1[4]. «— Reciprocity —» 1. p factors <& —1 is a square modulo p.
Let u? = — 1[p].

2. Define Z(p) = {(a,b) € Z? : au—b =0][p]}. 2. Compute pZ][i] = pp* by factoring 7> + 1 mod p .
3. Any shortest vector gives a two-square sum for p. 3. Compute‘generators‘of p, p*.
Compute them with Gauss-Lagrange’s algorithm. Preducts of them and units give two-square sums.
Gauss-Lagrange is very similar to Euclidean division This works because Euclidean = Principal =UFD.
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Extension to totally real fields

Let F = Q(¢ + ¢™1), with ¢ a primitive root of unity, and O, = Z[{ + ¢71].

2 yz, for some x,y € Or. No unique factorization anymore.

We have o = x

Instead we have unique factorization in prime ideals: a0, = H pr.
p

Alexandre Wallet, Maths for PQC workshop, 5/08/2024 26



Extension to totally real fields

Let F = Q(¢ + ¢™1), with ¢ a primitive root of unity, and O, = Z[{ + ¢71].

2 yz, for some x,y € Or. No unique factorization anymore.

We have o = x

Instead we have unique factorization in prime ideals: a0, = H pr.
p

Analog of Q(i) is F(i), and reciprocity is now factoring 72 + 1 modulo .
That is, p splits when A is a square in the finite field O/p.

Alexandre Wallet, Maths for PQC workshop, 5/08/2024 27



Extension to totally real fields

Let F = Q(¢ + ¢™1), with ¢ a primitive root of unity, and O, = Z[{ + ¢71].

We have o = x? yz, for some x,y € Or. No unique factorization anymore.
BB* | if p splits
Instead we have unique factorization in prime ideals: a0, = Hp"lﬂ. POy =3P , if p is inert
p (B> | if p ramifies)

Above, we have aOp; = (X + iy)Op;y - (X — 1) O

These ideals: 1) must share the prime factors of o
2) have conjugated prime factors.

This implies a0 ;) = H CRP*)"™ - H pz"p.

p splits p inert

Alexandre Wallet, Maths for PQC workshop, 5/08/2024 28



Extension to totally real fields L

Let F = Q(¢ + ¢™1), with ¢ a primitive root of unity, and O, = Z[{ + ¢71].

We have a = x? yz, for some x,y € Or. No unique factorization anymore.
BLB* | if p splits
Instead we have unique factorization in prime ideals: a0, = Hpvp. POr;y =P ,ifpisinert
p (B> | if p ramifies)
Above, we have aOp; = (X + 1y)Op; - (x — 1y) O
= || - [] p>.
p splits p inert

Theorem (up to ramification):

The set of elements in O that can be written as the sum of two O -squares is

$,(0p) ={a € 0p: aOp= ] »»- [] »™)

p splits p inert

Alexandre Wallet, Maths for PQC workshop, 5/08/2024 29
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Computing sums of squares

$,(0p) ={a€ 6y : aby= || v [] »™)

p splits p inert

Observations:
1) We can compute these primes given o

2) Must be at least one principal ideal (x + iy) O ;) among all meaningful products
of these primes

Alexandre Wallet, Maths for PQC workshop, 5/08/2024
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Computing sums of squares

$,(0p) ={a€ 6y : aby= || v [] »™)

p splits p inert

Observations:
1) We can compute these primes given o

2) Must be at least one principal ideal (x + iy) O ;) among all meaningful products
of these primes

To test if an ideal is principal in number fields and to compute a generator is a
(classically) hard problem!

And we may not even find the correct generator...

Alexandre Wallet, Maths for PQC workshop, 5/08/2024
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Computing sums of squares

$,(0p) ={a€ 6y : aby= || »>- [] »™)

p splits p inert

Observations:

1) We can compute these primes given o

2) Must be at least one principal ideal (x + iy) O ;) among all meaningful products
of these primes

3) We know the relative norm N o(x + iy) = .

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Recover generators up to roots
of unity
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Computing sums of squares

$,(0p) ={a€ 6y : aby= || »>- [] »™)

p splits p inert

Observations:
1) We can compute these primes given o

2) Must be at least one principal ideal (x + iy) O ;) among all meaningful products
of these primes

3) We know the relative norm N o(x + iy) = .

Gentry-Szydlo’s algorithm:

There is a polynomial time algorithm that, given a basis of an ideal / in a cyclotomic
field, and a candidate f for the relative norm of a potential generator g of I

1) Decides if I is principal;

2) Ifitis, returns an element g¢' = pg where p is a root of unity in the field.

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Recover generators up to roots
of unity

34



Computing sums of squares

$,(0p) ={a€ 6y : aby= || »>- [] »™)

p splits p inert

Observations:
1) We can compute these primes given o

2) Must be at least one principal ideal (x + iy) O ;) among all meaningful products

of these primes Recover all useful generators,

3) We know the relative norm Ny, o(x + iy) = a. in polynomial time, by solving
relative norm equations

4) We can also compute the roots of unity in F(7).

Alexandre Wallet, Maths for PQC workshop, 5/08/2024 35



An algorithm to compute sums-of-squares

Input: a € O
Output : the set S,(a) of all possible (x,y) € @% such that x* + v = a.

1. Factor a0 = H p'r . H qv; set S = ;if one v, is not even, return S

‘ splits inerts

2. Forall ) < ey, < Vy, do:

a. Compute [ = H PBCP*) "B H q'"* and set & = @

‘ splitters inerts
b. g « GentrySzydlo(/, a);
c.lfg#1L,set&d ={p-g : prootofunityin F(i)}.

d. Forallg'e &, writeg’'=x+iyand S =S U {(x,y)}
3. Return &' N @%.

Alexandre Wallet, Maths for PQC workshop, 5/08/2024
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An algorithm to compute sums-of-squares 2

Input: a € O
Output : the set S,(a) of all possible (x,y) € @% such that x* + v = a.

. . . o) Not polynomial time it the
1. Factor a0 = H pr- H q; setd =@ ;ifone v, is not even, return &' factorization is not given.
‘ splits inerts
2_ For a” O S ep S Vp’ do ................................................................................................................................................................................................................... POSSlbly many Comblnatlons
a. Compute I = H SPEBOP*) B - H q’’* and set € = @
‘ splitters inerts

b. g « GentrySzydlo(/, a);
c.lfg#L,set& ={p-g : prootofunityin F(i)}.

d. Forallg'e &, writeg’'=x+iyand S =S U {(x,y)}

3. Return & N @12?- ............................................................................................................................................................................................................................................ @F 4+ i@F _,C,_ @F(i) in general

Alexandre Wallet, Maths for PQC workshop, 5/08/2024
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An algorithm to solve totally real modLIP

Input: the public Gram matrix G = B'B = [

8 X
81

Output : the set of U € GL,(O) describing the congruence class of G

1. Forb € {0,1}:
a. &, < TwoSquares(g,)

2. Let U = @.
For all (a,b),(a’,b’) € &y X &;:

/

a. D « [Z Z/]

b. f V= C~'Dis acongruence matrix for G, set % = % U {V}.

3. Return %.

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

] and a matrix C such that C'C = U'GU

Theorem (Mureau, Pellet—Mary, Pliatsok, W.)

This algorithm returns (a description of) the
congruence class of G.

Possibly many steps.

38



Towards polynomial time: the randomization step (1/2)

Goal: avoid factoring and control loops to achieve (classic) polynomial time

with G = B’B, from vectors in @% we can learn the norm of vectors in Z(B):

(X, MG, ¥) = (x,y)B' - B(x,y) = a* + b*

If we have two that are linearly independent, we deduce congruence matrices by linear algebra:

D=CV~D =CVX

Lemma: we can sample Gaussians (x,y) € @% so that B(x, y) is spherical, without knowing B.

(This way we have at least some control over (a, b))

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

(a,b) = B(x, y)

X — [x x:]
y y
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Towards polynomial time: the randomization step (2/2)

Goal: avoid factoring and control loops to achieve (classic) polynomial time

Randomization step: feed random vectors (x, y) € @% to G until:
- Two of them span the space

. These two have a prime relative norm, that is, (x, ¥)G(x, y)' = a® + b? is a prime in Or.

= compute the corresponding sum of squares without having to factor!

= primes in F have at most two divisors in F(i) so poly(|F : QQ]) steps in the loop at worst.

Heuristic assumption:

With large enough width, g := a’ + b* behaves like a « uniformly random » principal ideal.

|
(GRH) Proba(q IS prime) ~ , pr- residue at 1 of the Dedekind zeta function of F.

pr - In N(g)

Alexandre Wallet, Maths for PQC workshop, 5/08/2024
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Conclusion for modLIP over totally real fields

Theorem (Mureau, Pellet—Mary, Pliatsok, W.)
Let I be a totally real number field with ring of integers O

There is an algorithm that solves modLIP over rank 2 free (O .-modules in heuristic polynomial-time (in pz, [F : Q]).

he full algorithm is implemented for cyclotomic fields with conductor m = 4k.
https://qitlab.inria. fr/capsule/code-for-module-lip

* |In the paperl, we provide an algorithm for rank 2 (non-free) modules and its tools. It also runs
in polynomial-time (depending on an additional, precomputable quantity).

L. ePrint 2024/441

Alexandre Wallet, Maths for PQC workshop, 5/08/2024
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ModLIP in rank 2, over CM-extensions

Alexandre Wallet, Maths for PQC workshop, 5/08/2024




Back to the general case (or almost)

For simplicity: let K = Q(¢) where ¢ is a primitive root of unity, and F = Q(¢ + ¢~1). Assume i € K.

_ *_ - y * -

G o
ub RS R Y 7*7 + wHw|

P

We can write x = xp +ix; € K= F + (FF and x*x = xu% + )cu2 (and similarly for y, z, w).

So we can recover B if we can compute all sums of four squares that give g, g;.

Alexandre Wallet, Maths for PQC workshop, 5/08/2024



Back to the general case (or almost)

For simplicity: let K = Q(¢) where ¢ is a primitive root of unity, and F = Q(¢ + ¢~1). Assume i € K.

_ * XFx 4 y¥ * _
80 yry — B*B
x g1l | % 7¥7+ wFw

Gub:

P

We can write x = xp +ix; € K= F + (FF and x*x = xu% + )cu2 (and similarly for y, z, w).

So we can recover B if we can compute all sums of four squares that give g, g;.

his links to Lagrange’s four square theorem: Every integer can be written as the sum of four integers squared.

At least two proofs: We need:
* a geometric one with short vectors (mostly for prime integers) * An algorithmic version of it

- an algebraic proof using quaternions * An extension to cyclotomic integers

Alexandre Wallet, Maths for PQC workshop, 5/08/2024



The nice case: cyclotomic modLIP over @%{ (1/2)

Geometric view!

G =B*B with B = [ch vzv] and det B = 1 (a basis of @%() X
x —y*

Another interesting basis: S = . |
y Xxr

It is essentially unitary: S*S = g, - I,

I - Thomas and Heorhii, ePrint 2024/1148
Alexandre Wallet, Maths for PQC workshop, 5/08/2024
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The nice case: cyclotomic modLIP over @%{ (1/2)

Geometric view!

G = B*B with B [x -

y w] and det B = 1 (a basis of @%{)

— ()

Another interesting basis: S = l

y x* [

It is essentially unitary: S*S = g, - L. : <x>

1 —801] —. T @%{

Coordinate-wise: B~'S = l
0 g

= £ (T%*) is a public hypercubic lattice, and it has a
secret orthogonal basis S*.

I - Thomas and Heorhii, ePrint 2024/1148
Alexandre Wallet, Maths for PQC workshop, 5/08/2024 46



The nice case: cyclotomic modLIP over @%(

Geometric view!

1 0

The lattice spanned by T* = .
—801 80

] IS similar to

lattices from two-squares: Observation:

Z(8y) = {(a,b) € @%( 3 g5’<1a —b =0 [gl} x —y*
S = is actually a matrix representation
y XxF
where g go; = — 1 [g]: -1 is a two-squares sums mod g, for a quaternion.

Conclusionl:

An oracle to compute an orthogonal basis in a hyper cubic
lattice recovers (x, y).

I - Thomas and Heorhii, ePrint 2024/1148
Alexandre Wallet, Maths for PQC workshop, 5/08/2024
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Sprinkles of quaternion algebra 3

Let i = — 1, and j such that —ji = ij =: kand j> = k* = — 1.

Quaternion algebra A :=F(,j) ~F+IiF+jF+kF
U
CM-extension of F K = F(l) ~ F+iF

1 C

Totally real number field

There is an involution extending the conjugation: Using that &/ = K + Kj, we can represent elements as

(a+ib+jc+ kd)* =a—ib—jc—kd matrices of multiplication:
There is a norm map extending the relative norm from F(i) | F- X4 yj e lx —Y*l
%
Nrd(a +ib + jc + kd) = a> +b*> +c*+d* € F y A

Alexandre Wallet, Maths for PQC workshop, 5/08/2024



Now that we have more algebra:

G X*x + y*y  xFz 4 y*w

: = B*B

_ 80 801_
ub o gl_

77 + wrw

Observations:

- We have not used the anti-diagonal term g, yet

* As we reduced to sums-of-squares computations, maybe we can mimic the previous strategy

Alexandre Wallet, Maths for PQC workshop, 5/08/2024 49



Now that we have more algebra:

G

B [80 o1
pub — | .

81_

Observations:

- We have not used the anti-diagonal term g, yet

xXEx +y*y  xFz 4+ y*w
Z*z+ whw

= B*B

* As we reduced to sums-of-squares computations, maybe we can mimic the previous strategy

The non commutative-settings brings a lot of inconveniences:

F (1) F(i, )
Unique factorisation Yes Not for sided ideals
IN prime ideals
Maximal ring of integers 1 Many
Roots of unity Straightforward Depends on the subring
Algorithms for norm equations Some poly-time All known exp-time

Alexandre Wallet, Maths for PQC workshop, 5/08/2024
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The nice case: cyclotomic modLIP over @%( (2/2)

_y>l< + x>I<j

>)c+yj
O+ Orj

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Z+wjy

Quaternion view”

. 0% identifies to the maximal order O + O .

It is generated by @ = x + yjand ff = z + wy.

- The matrix S represents the quaternion x + yj, so:

ST B=T =>a 'f=g,"(gy +))

Lemma: we can compute a basis of a(Or + O j) from the

public data.

2. with Clemence, Guilhem, Alice and Pierre-Alain, ePrint 2024/1147
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The nice case: cyclotomic modLIP over @%( (2/2)

_y>l< + x>I<j

>)c+yj
O+ Orj

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Z+wjy

Quaternion view”

. 0% identifies to the maximal order O + O .

It is generated by @ = x + yjand ff = z + wy.

- The matrix S represents the quaternion x + yj, so:
ST B=T =>a 'f=g,"(gy +))

Lemma: we can compute a basis of a(Or + O j) from the
public data.

We have the norm of a since Nrd(a) = g

= we recover a if we can compute generators of
principal ideals given their relative norm.

2. with Clemence, Guilhem, Alice and Pierre-Alain, ePrint 2024/1147
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The nice case: cyclotomic modLIP over @%(

Geometric view!

1 0
_86k1 80

Z(gy) = {(a,b) € Ok : g¥a—b =0 [g])

The lattice spanned by T* = [ ] is hyper-cubic:

Conclusionl:

An oracle to compute an orthogonal basis in a hyper cubic
lattice recovers (x, y).

(We do not know efficient algorithms to compute orthogonal
bases in large dimension.)

I - Thomas and Heorhii, ePrint 2024/1148
Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Quaternion view”

The public data gives a principal ideal (x + yj)©, and we
know the reduced norm of this generator.

Conclusionz:

Cyclotomic modLIP over @%{ reduces to the quaternion
version of the Principal Ideal with Relative Norm Problem.

(We do not know an extension of Gentry-Szydlo’s algorithm
for this non-commutative setting)

2. with Clemence, Guilhem, Alice and Pierre-Alain, ePrint 2024/1147
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Conclusion for modLIP over CM-extensions

Theorem(s) ([insert the list of peeps]):

Let K | F be a CM-extension with ring of integers O.

Computing short orthogonal bases of hypercubic lattices

ModLIP over rank 2 free O0x-modules reduces to Solving the Principal (Left)-ideal problem given the reduced
norm of a generator (in quaternion algebras)

 [n ePrint 2024/1147, we extend the reduction to rank 2 non-free modules.

- The reduction technique works as well directly over F totally real:
v'No need for randomization anymore

v This gives a provable polynomial time algorithm for totally real modLIP!
(see also an independent work! for an equivalent result with a different approach)

Lh, Luo, K. Jiang, Y. Pan and A. Wang, ePrint 2024/1173
Alexandre Wallet, Maths for PQC workshop, 5/08/2024
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Time to wrap-up!




Another reduction (ePrint 2024/1173)

Theorem!': Let K | F' be a CM-extension. If an additional symplectic automorphism q§j of @%{ IS given, then

free-modLIPllz can be solved in polynomial time.

Very high level idea:
- Knowing qu , one can construct a CM-order £ in which @%{ IS a principal ideal lattice.
0 Lenstra-SiIverberg’s2 applies: it computes a generator of @%{ iIn polynomial time.
- This generator essentially corresponds to a column of the secret basis, up to an isometry of @%{.

. (Consequence of Kronecker) Isom(@%{) iIs a known finite group of polynomial size.

L. Luo, K. Jiang, Y. Pan and A. Wang, ePrint 2024/1173 2. H. Lenstra, A. Silverberg: arXiv 1706.07373
Alexandre Wallet, Maths for PQC workshop, 5/08/2024

56



Another reduction (ePrint 2024/1173)

Theorem!': Let K | F' be a CM-extension. If an additional symplectic automorphism q§j of @%{ IS given, then

free-modLIPllz can be solved in polynomial time.

My very rough understanding is:
 ¢; corresponds to j in the quaternion.
* We need to know its action over the secret basis, but we only know its action in « the canonical one ».

- The article shows that one can easily compute the action of 7 :=[j] o -* in the secret basis from public data.

L. Luo, K. Jiang, Y. Pan and A. Wang, ePrint 2024/1173 2. H. Lenstra, A. Silverberg: arXiv 1706.07373
Alexandre Wallet, Maths for PQC workshop, 5/08/2024
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Hawk
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Hawk

Alexandre Wallet, Maths for PQC workshop, 5/08/2024
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O non-commutative

EXxp time

Free ModLipg
; rank 1

Short bases of -" ModLIPs
hypercubic lattices : rank 2
A
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8 ModLIP@K
rank n

O CM-order
Poly time

Sum of 2, of 4
squares

ModLIP 5
rank n’
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THANK YOU!
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