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The Lattice Isomorphism Problem (LIP)

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

ℒ(B) Oℒ(B)

O ∈ On(ℝ)

Compute the  
isometry O
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The Lattice Isomorphism Problem (LIP)

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

ℒ(B) Oℒ(B) = ℒ(B′ )

O ∈ On(ℝ)

Compute the  
isometry O

A computational version:  Given , with  orthogonal and , compute  or .B′ = OBU O U ∈ GLn(ℤ) O U
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Proof of knowledge from LIP1

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

  L. Ducas and W. Van Woerden, e.g. ePrint 2021/13321 :

ℤn Oℤn

O, U secret Prover Verifier

G = UtU

OU
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Proof of knowledge from LIP1

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

  L. Ducas and W. Van Woerden, e.g. ePrint 2021/13321 :

ℤn Oℤn

O, U secret Prover Verifier

G = UtU

OU
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Proof of knowledge from LIP1

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

  L. Ducas and W. Van Woerden, e.g. ePrint 2021/13321 :

ℤn Oℤn

O, U secret Prover Verifier

G = UtU

OU

6

mm̃ = Um
Sample short  in x̃ Om̃ + ℤn

s = U−1Ots̃ = m − U−1Otx̃

Om̃ x̃s̃

m



Proof of knowledge from LIP1

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

  L. Ducas and W. Van Woerden, e.g. ePrint 2021/13321 :

ℤn Oℤn

O, U secret Prover Verifier

G = UtU

OU

7

mm̃ = Um
Sample short  in x̃ Om̃ + ℤn

Om̃ x̃

s 1)  ?    2)  is short?

Yes both: the verifier is convinced!

(in the end, we do not care so much for )

OUs ∈ Zn (m − s)tG(m − s)

O

∥x̃∥2

=

m

s = U−1Ots̃ = m − U−1Otx̃

ss̃
m − s



Proof of knowledge from LIP1

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

  L. Ducas and W. Van Woerden, e.g. ePrint 2021/13321 :

ℤn Oℤn

O, U secret Prover Verifier

G = UtU

OU

8

m

Om̃ x̃

s 1)  ?    2)  is short?

Yes both: the verifier is convinced!

(in the end, we do not care so much for )

OUs ∈ Zn (m − s)tG(m − s)

O

∥x̃∥2

=

Observation:


Any  such that   
allows to convince the verifier.


(Run the protocol with  instead of ).

V ∈ GLn(ℤ) VtV = G

V U

m

s m − s

m̃ = Um
Sample short  in x̃ Om̃ + ℤn

s = U−1Ots̃ = m − U−1Otx̃

s̃



The Lattice Isomorphism Problem (LIP), with quadratic forms

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

ℒ(B) Oℒ(B) = ℒ(B′ )

Two quadratic forms  are integrally congruent when  for some congruence matrix . 


LIP : Given ,  and , find any congruence matrix  between  and .

G, G′ G′ = UtGU U ∈ GLn(ℤ)

B B G = BtB G′ ∼ℤ G U G G′ 
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B′ tB′ = Ut(BtB)U



Hawk  and module lattices1

Alexandre Wallet, Maths for PQC workshop, 5/08/2024
  https://hawk-sign.info, also ePrint 2022/1155 (L. Ducas, E. Postlethwaite, L. Pulles and W. Van Woerden. See also Wessel’s talk!1 :

Hawk PoK  Signature↦Cyclotomic  
module lattices

New context:


 , , and  (for  primitive).  


Identify  with , a free module lattice of rank 2. 

 Transpose becomes conjugate-transpose

m = 2ℓ K = ℚ(ζm) 𝒪K := ℤ[ζm] ζm

ℤm 𝒪2
K

Two forms  are -congruent when  for some congruence matrix . 


(Free-)Mod-LIP : Given ,  and , find any congruence matrix  between  and .

G, G′ 𝒪K G′ = U*GU U ∈ GLn(𝒪K)
B
K B G = B*B G′ ∼𝒪K

G U G G′ 
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Hawk  and module lattices1

Alexandre Wallet, Maths for PQC workshop, 5/08/2024
  https://hawk-sign.info, also ePrint 2022/1155 (L. Ducas, E. Postlethwaite, L. Pulles and W. Van Woerden. See also Wessel’s talk!1 :

Hawk PoK  Signature↦Cyclotomic  
module lattices

New context:


 , , and  (for  primitive).  


Identify  with , a free module lattice of rank 2. 

 Transpose becomes conjugate-transpose

m = 2ℓ K = ℚ(ζm) 𝒪K := ℤ[ζm] ζm

ℤm 𝒪2
K

Two forms  are -congruent when  for some congruence matrix . 


(Free-)Mod-LIP : Given ,  and , find any congruence matrix  between  and .

G, G′ 𝒪K G′ = U*GU U ∈ GLn(𝒪K)
B
K B G = B*B G′ ∼𝒪K

G U G G′ 

Could be extended to many number fields K

Don’t do it in rank 1!
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Why not using ideal lattices?

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Say , a cyclotomic field, the lattice is .


We pick a private unit , and publish the totally real element .


K = ℚ(ζ) 𝒪K

u ∈ 𝒪×
K g = u*u σ(g) ∈ ℝ+

For all σ : K → ℂ

 is the field fixed by 

(A totally real field)


F ⋅*
Observation: 

The congruence class is then the set of solutions of the relative norm equation 

,

where 

N(x) = g
N : K → F, N(a) = a*a .

Do not use ideal lattice because there are polynomial time algorithms  for this!1

 Gentry-Szydlo’s algorithm for cyclotomic fields, Lenstra-Silverberg for general « CM-orders ».1 :

(But this information is useful for the rest of the talk!)
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Now what’s the plan for today?

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Target: ModLIP over Rank 2, Free, module lattices


Mod-LIP : Given ,  and , find any congruence matrix  between  and .B
K B G = B*B G′ ∼𝒪K

G U G G′ 

Fermat’s two squares problem

A heuristic polynomial time algorithm to 
 solve ModLIP over totally real number fields

Lagrange’s four square theorem, quaternions:  
new reductions for ModLIP over CM-extension fields

State of affairs, perspectives, open questions

13
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ModLIP in rank 2  
over totally real fields 

 
aka.  

Fermat’s « two squares » theorem

Alexandre Wallet, Maths for PQC workshop, 5/08/2024



The totally real version of ModLip

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Now, we let  be a totally real number field (all embeddings map to ) and





So we can recover the key if we can compute all sums of two squares giving .

 

K ℝ

Gpub = [ g0 ⋆
⋆ g1 ] = [x2 + y2 ⋆

⋆ z2 + w2] = B*B

g0, g1

B = [x z
y w]

15
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The totally real version of ModLip

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Now, we let  be a totally real number field (all embeddings map to ) and





So we can recover the key if we can compute all sums of two squares giving .

 

This links back to Fermat’s two squares theorem:

K ℝ

Gpub = [ g0 ⋆
⋆ g1 ] = [x2 + y2 ⋆

⋆ z2 + w2] = B*B

g0, g1

• A prime integer  is the sum of two integers squared if and only if .

• The set of integers that can be written as the sums of two squares is:


p p ≡ 1 [4]

S2(ℤ) := {2e ⋅ ∏
p≡1 [4]

pvp ⋅ ∏
p≡3 [4]

p2vp : e, vp ∈ ℕ}

We need:

• An algorithmic version of it

• An extension to algebraic 

integers

B = [x z
y w]

16
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Two classic proofs strategies

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

 is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in .S2(ℤ) S2(ℤ)

 
We look at , that is . p = x2 + y2 x2 ≡ − y2 [p]

Proof with geometry

17
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Two classic proofs strategies

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

 is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in .S2(ℤ) S2(ℤ)

 
We look at , that is . 

1.  is a square mod  . 
Let  

2. Define  
For , we have . 
 
A basis is . 

p = x2 + y2 x2 ≡ − y2 [p]

−1 p ⇔ p ≡ 1 [4]
u2 ≡ − 1 [p] .

ℒ(p) = {(a, b) ∈ ℤ2 : au − b ≡ 0 [p]} .
v ∈ ℒ(p) ∥v∥2 = a2 + b2 ∈ pℤ

[1 0
u p]

Proof with geometry

(1
3)

(0
5)

18
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(1
3)

(0
5)

Two classic proofs strategies

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

 is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in .S2(ℤ) S2(ℤ)

 
We look at , that is . 

1.  is a square mod  . 
Let  

2. Define  
For , we have . 
 
A basis is .  And we have  

p = x2 + y2 x2 ≡ − y2 [p]

−1 p ⇔ p ≡ 1 [4]
u2 ≡ − 1 [p] .

ℒ(p) = {(a, b) ∈ ℤ2 : au − b ≡ 0 [p]} .
v ∈ ℒ(p) ∥v∥2 = a2 + b2 ∈ pℤ

[1 0
u p] λ1(ℒ(p))2 < 2p .

Proof with geometry

Minkowski’s theorem (in rank ) 
Let  be a lattice of rank . The shortest vector in 

 has length:


.

2
ℒ 2

ℒ∖{0}

λ1(ℒ)2 ≤
4
π

⋅ det(ℒ)

19
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Two classic proofs strategies

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

 is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in .S2(ℤ) S2(ℤ)

 
We look at , that is . 

1.  is a square mod  . 
Let  

2. Define  
For , we have . 
 
A basis is .  And we have  

3. Any shortest vector gives a two-square sum for . 
Compute them with Gauss-Lagrange’s algorithm.

p = x2 + y2 x2 ≡ − y2 [p]

−1 p ⇔ p ≡ 1 [4]
u2 ≡ − 1 [p] .

ℒ(p) = {(a, b) ∈ ℤ2 : au − b ≡ 0 [p]} .
v ∈ ℒ(p) ∥v∥2 = a2 + b2 ∈ pℤ

[1 0
u p] λ1(ℒ(p))2 < 2p .

p

Proof with geometry

(1
3)

(0
5)

(  is similar to )ℒ(p) ℤ2

20
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Two classic proofs strategies

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

 is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in .S2(ℤ) S2(ℤ)

 
We look at , that is . 
 

1.  is a square mod  . 
Let  

2. Define  

3. Any shortest vector gives a two-square sum for . 
Compute them with Gauss-Lagrange’s algorithm.

p = x2 + y2 x2 ≡ − y2 [p]

−1 p ⇔ p ≡ 1 [4]
u2 ≡ − 1 [p] .

ℒ(p) = {(a, b) ∈ ℤ2 : au − b ≡ 0 [p]} .

p

Proof with geometry
 
In the Gauss integers , we have:


. 

1.  factors  factors modulo  
Its discriminant is . It is a square mod  iff  is 
a square modulo . 

ℤ[i]
p = N(x + iy) := (x + iy)(x − iy)

p ⇔ T2 + 1 p
Δ = − 4 p −1
p

Proof with arithmetic

21
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Two classic proofs strategies

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

 is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in .S2(ℤ) S2(ℤ)

Proof with geometry
 
In the Gauss integers , we have:


. 

1.  factors   is a square modulo . 

2. Then  mod .  
Two conjugate primes above . One is . 

ℤ[i]
p = N(x + iy) := (x + iy)(x − iy)

p ⇔ −1 p

T2 + 1 = (T − a)(T − b) p
p 𝔭 = ⟨p, i − a⟩

 
We look at , that is . 
 

1.  is a square mod  . 
Let  

2. Define  

3. Any shortest vector gives a two-square sum for . 
Compute them with Gauss-Lagrange’s algorithm.

p = x2 + y2 x2 ≡ − y2 [p]

−1 p ⇔ p ≡ 1 [4]
u2 ≡ − 1 [p] .

ℒ(p) = {(a, b) ∈ ℤ2 : au − b ≡ 0 [p]} .

p

Proof with arithmetic

22
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Two classic proofs strategies

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

 is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in .S2(ℤ) S2(ℤ)

Proof with geometry
 
In the Gauss integers , we have:


. 

1.  factors   is a square modulo . 

2. Then  mod .  
Two conjugate primes above . One is . 

3.  is Euclidean: compute gcd of  and  with 
Euclidean division to obtain a generator  of .  

4. Do the same for , loop over all units in  to get all 
generators.

ℤ[i]
p = N(x + iy) := (x + iy)(x − iy)

p ⇔ −1 p

T2 + 1 = (T − a)(T − b) p
p 𝔭 = ⟨p, i − a⟩

ℤ[i] p i − a
x + iy 𝔭

𝔭* ℤ[i]

 
We look at , that is . 
 

1.  is a square mod  . 
Let  

2. Define  

3. Any shortest vector gives a two-square sum for . 
Compute them with Gauss-Lagrange’s algorithm.

p = x2 + y2 x2 ≡ − y2 [p]

−1 p ⇔ p ≡ 1 [4]
u2 ≡ − 1 [p] .

ℒ(p) = {(a, b) ∈ ℤ2 : au − b ≡ 0 [p]} .

p

Proof with arithmetic

23

1



Two classic proofs strategies

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

 is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in .S2(ℤ) S2(ℤ)

 
We look at , that is . 
 

1.  is a square mod  . 
Let  

2. Define  

3. Any shortest vector gives a two-square sum for . 
Compute them with Gauss-Lagrange’s algorithm.

p = x2 + y2 x2 ≡ − y2 [p]

−1 p ⇔ p ≡ 1 [4]
u2 ≡ − 1 [p] .

ℒ(p) = {(a, b) ∈ ℤ2 : au − b ≡ 0 [p]} .

p

Proof with geometry
 
In , we have . 
 

1.  factors   is a square modulo . 
 
z


2. Compute  by factoring  mod  

3. Compute generators of . 
Products of them and units give two-square sums.

ℤ[i] p = N(x + iy) := (x + iy)(x − iy)

p ⇔ −1 p

pℤ[i] = 𝔭𝔭* T2 + 1 p .

𝔭, 𝔭*

Proof with arithmetic

24
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In , we have . 
 

1.  factors   is a square modulo . 
 
z


2. Compute  by factoring  mod  

3. Compute generators of . 
Products of them and units give two-square sums.

ℤ[i] p = N(x + iy) := (x + iy)(x − iy)

p ⇔ −1 p

pℤ[i] = 𝔭𝔭* T2 + 1 p .

𝔭, 𝔭*

Two classic proofs strategies

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

 is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in .S2(ℤ) S2(ℤ)

 
We look at , that is . 
 

1.  is a square mod  . 
Let  

2. Define  

3. Any shortest vector gives a two-square sum for . 
Compute them with Gauss-Lagrange’s algorithm.

p = x2 + y2 x2 ≡ − y2 [p]

−1 p ⇔ p ≡ 1 [4]
u2 ≡ − 1 [p] .

ℒ(p) = {(a, b) ∈ ℤ2 : au − b ≡ 0 [p]} .

p

Proof with geometry

Reciprocity

Gauss-Lagrange is very similar to Euclidean division This works because Euclidean  Principal UFD.⇒ ⇒

Proof with arithmetic

25
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Extension to totally real fields

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Let , with  a primitive root of unity, and . 
 
We have  for some .  No unique factorization anymore. 
 
Instead we have unique factorization in prime ideals:  .

F = ℚ(ζ + ζ−1) ζ 𝒪F = ℤ[ζ + ζ−1]

α = x2 + y2, x, y ∈ 𝒪F

α𝒪F = ∏
𝔭

𝔭v𝔭

26
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Extension to totally real fields

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Let , with  a primitive root of unity, and . 
 
We have  for some .  No unique factorization anymore. 
 
Instead we have unique factorization in prime ideals:  .


F = ℚ(ζ + ζ−1) ζ 𝒪F = ℤ[ζ + ζ−1]

α = x2 + y2, x, y ∈ 𝒪F

α𝒪F = ∏
𝔭

𝔭v𝔭

Analog of  is , and reciprocity is now factoring  modulo .


That is,  splits when  is a square in the finite field .

ℚ(i) F(i) T2 + 1 𝔭
𝔭 Δ 𝒪F /𝔭

27
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Extension to totally real fields

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Let , with  a primitive root of unity, and . 
 
We have  for some .  No unique factorization anymore. 
 
Instead we have unique factorization in prime ideals:  .


Above, we have . 

F = ℚ(ζ + ζ−1) ζ 𝒪F = ℤ[ζ + ζ−1]

α = x2 + y2, x, y ∈ 𝒪F

α𝒪F = ∏
𝔭

𝔭v𝔭

α𝒪F(i) = (x + iy)𝒪F(i) ⋅ (x − iy)𝒪F(i)

  𝔭𝒪F(i) =
𝔓𝔓*
𝔭
(𝔓2

, if  splits𝔭
, if  is inert𝔭
, if  ramifies)𝔭

These ideals:  1) must share the prime factors of   
                       2) have conjugated prime factors. 
 
This implies 

α

α𝒪F(i) = ∏
𝔭 splits

(𝔓𝔓*)v𝔓 ⋅ ∏
𝔭 inert

𝔭2v𝔭 .

28
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Extension to totally real fields

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Let , with  a primitive root of unity, and . 
 
We have  for some .  No unique factorization anymore. 
 
Instead we have unique factorization in prime ideals:  .


Above, we have 


                                     

F = ℚ(ζ + ζ−1) ζ 𝒪F = ℤ[ζ + ζ−1]

α = x2 + y2, x, y ∈ 𝒪F

α𝒪F = ∏
𝔭

𝔭v𝔭

α𝒪F(i) = (x + iy)𝒪F(i) ⋅ (x − iy)𝒪F(i)

= ∏
𝔭 splits

(𝔓𝔓*)v𝔓 ⋅ ∏
𝔭 inert

𝔭2v𝔭 .

  𝔭𝒪F(i) =
𝔓𝔓*
𝔭
(𝔓2

, if  splits𝔭
, if  is inert𝔭
, if  ramifies)𝔭

Theorem (up to ramification): 
The set of elements in  that can be written as the sum of two -squares is


 

𝒪F 𝒪F

S2(𝒪F) = {α ∈ 𝒪F : α𝒪F = ∏
𝔭 splits

𝔭v𝔭 ⋅ ∏
𝔭 inert

𝔭2v𝔭}

29
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From two-squares to module lattices isomorphisms



Computing sums of squares

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

S2(𝒪F) = {α ∈ 𝒪F : α𝒪F = ∏
𝔭 splits

𝔭v𝔭 ⋅ ∏
𝔭 inert

𝔭2v𝔭}

Observations:


1) We can compute these primes given 


2) Must be at least one principal ideal  among all meaningful products 
of these primes

α
(x + iy)𝒪F(i)

31

2



Computing sums of squares

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

S2(𝒪F) = {α ∈ 𝒪F : α𝒪F = ∏
𝔭 splits

𝔭v𝔭 ⋅ ∏
𝔭 inert

𝔭2v𝔭}

Observations:


1) We can compute these primes given 


2) Must be at least one principal ideal  among all meaningful products 
of these primes

α
(x + iy)𝒪F(i)

To test if an ideal is principal in number fields and to compute a generator is a 
(classically) hard problem! 

 
And we may not even find the correct generator…

32
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Computing sums of squares

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

S2(𝒪F) = {α ∈ 𝒪F : α𝒪F = ∏
𝔭 splits

𝔭v𝔭 ⋅ ∏
𝔭 inert

𝔭2v𝔭}

Observations:


1) We can compute these primes given 


2) Must be at least one principal ideal  among all meaningful products 
of these primes


3) We know the relative norm .

α
(x + iy)𝒪F(i)

NF(i)|F(x + iy) = α

Recover generators up to roots 
of unity

33
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Computing sums of squares

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

S2(𝒪F) = {α ∈ 𝒪F : α𝒪F = ∏
𝔭 splits

𝔭v𝔭 ⋅ ∏
𝔭 inert

𝔭2v𝔭}

Observations:


1) We can compute these primes given 


2) Must be at least one principal ideal  among all meaningful products 
of these primes


3) We know the relative norm .

α
(x + iy)𝒪F(i)

NF(i)|F(x + iy) = α

Recover generators up to roots 
of unity

Gentry-Szydlo’s algorithm:


There is a polynomial time algorithm that, given a basis of an ideal  in a cyclotomic 
field, and a candidate  for the relative norm of a potential generator  of :


1) Decides if  is principal;


2) If it is, returns an element  where  is a root of unity in the field.

I
β g I

I
g′ = ρg ρ

34
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Computing sums of squares

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

S2(𝒪F) = {α ∈ 𝒪F : α𝒪F = ∏
𝔭 splits

𝔭v𝔭 ⋅ ∏
𝔭 inert

𝔭2v𝔭}

Observations:


1) We can compute these primes given 


2) Must be at least one principal ideal  among all meaningful products 
of these primes


3) We know the relative norm .


4) We can also compute the roots of unity in .

α
(x + iy)𝒪F(i)

NF(i)|F(x + iy) = α

F(i)

Recover all useful generators, 
in polynomial time, by solving 

relative norm equations

35
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Input: 


Output : the set  of all possible  such that .


1. Factor  ;  set  ; if one  is not even, return .


2. For all , do:


a. Compute  and set 


b. GentrySzydlo ;


c. If  set  root of unity in .


d. For all , write  and 


3. Return .

α ∈ 𝒪F

S2(α) (x, y) ∈ 𝒪2
F x2 + y2 = α

α𝒪F = ∏
splits

𝔭v𝔭 ⋅ ∏
inerts

𝔮v𝔮 𝒮 = ∅ v𝔮 𝒮

0 ≤ e𝔭 ≤ v𝔭

I = ∏
splitters

𝔓e𝔓(𝔓*)v𝔓−e𝔓 ⋅ ∏
inerts

𝔮v𝔮/2 𝒢 = ∅

g ← (I, α)

g ≠ ⊥ , 𝒢 = {ρ ⋅ g : ρ F(i)}

g′ ∈ 𝒢 g′ = x + iy 𝒮 = 𝒮 ∪ {(x, y)}

𝒮 ∩ 𝒪2
F

An algorithm to compute sums-of-squares
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Input: 


Output : the set  of all possible  such that .


1. Factor  ;  set  ; if one  is not even, return .


2. For all , do:


a. Compute  and set 


b. GentrySzydlo ;


c. If  set  root of unity in .


d. For all , write  and 


3. Return .

α ∈ 𝒪F

S2(α) (x, y) ∈ 𝒪2
F x2 + y2 = α

α𝒪F = ∏
splits

𝔭v𝔭 ⋅ ∏
inerts

𝔮v𝔮 𝒮 = ∅ v𝔮 𝒮

0 ≤ e𝔭 ≤ v𝔭

I = ∏
splitters

𝔓e𝔓(𝔓*)v𝔓−e𝔓 ⋅ ∏
inerts

𝔮v𝔮/2 𝒢 = ∅

g ← (I, α)

g ≠ ⊥ , 𝒢 = {ρ ⋅ g : ρ F(i)}

g′ ∈ 𝒢 g′ = x + iy 𝒮 = 𝒮 ∪ {(x, y)}

𝒮 ∩ 𝒪2
F

An algorithm to compute sums-of-squares

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Not polynomial time if the 
factorization is not given.

 in general𝒪F + i𝒪F ⊊ 𝒪F(i)

Possibly many combinations
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An algorithm to solve totally real modLIP

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Input: the public Gram matrix  and a matrix  such that 


Output : the set of  describing the congruence class of 


1. For :


a.  TwoSquares 


2. Let .  
For all :


a. 


b.  If  is a congruence matrix for , set .


3. Return . 

G = BtB = [ g0 ⋆
⋆ g1 ] C CtC = UtGU

U ∈ GL2(𝒪F) G

b ∈ {0,1}

𝒮b ← (gb)

𝒰 = ∅
(a, b), (a′ , b′ ) ∈ 𝒮0 × 𝒮1

D ← [a a′ 

b b′ ]
V = C−1D G 𝒰 = 𝒰 ∪ {V}

𝒰

Theorem (Mureau, Pellet—Mary, Pliatsok, W.) 
This algorithm returns (a description of) the 
congruence class of .G

Possibly many steps.
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Towards polynomial time: the randomization step (1/2)

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

With , from vectors in  we can learn the norm of vectors in :





If we have two that are linearly independent, we deduce congruence matrices by linear algebra:


G = BtB 𝒪2
F ℒ(B)

(x, y)G(x, y)t = (x, y)Bt ⋅ B(x, y)t = a2 + b2

D = CV ∼ D′ = CVX X = [x x′ 

y y′ ]

(a, b) = B(x, y)

Lemma: we can sample Gaussians  so that  is spherical, without knowing .


(This way we have at least some control over )

(x, y) ∈ 𝒪2
F B(x, y) B
(a, b)

Goal: avoid factoring and control loops to achieve (classic) polynomial time
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Towards polynomial time: the randomization step (2/2)

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Randomization step: feed random vectors  to  until:

• Two of them span the space 

• These two have a prime relative norm, that is,  is a prime in .


 compute the corresponding sum of squares without having to factor! 
 primes in  have at most two divisors in  so  steps in the loop at worst.

(x, y) ∈ 𝒪2
F G

(x, y)G(x, y)t = a2 + b2 𝒪F

⇒
⇒ F F(i) poly([F : ℚ])

Heuristic assumption: 


With large enough width,  behaves like a « uniformly random » principal ideal. 

(GRH) Proba  is prime  ,   residue at 1 of the Dedekind zeta function of .

q := a2 + b2

(q ) ≈
1

ρF ⋅ ln N(q)
ρF F

Goal: avoid factoring and control loops to achieve (classic) polynomial time 
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Conclusion for modLIP over totally real fields

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

• The full algorithm is implemented for cyclotomic fields with conductor . 
https://gitlab.inria. fr/capsule/code-for-module-lip 
 

• In the paper , we provide an algorithm for rank 2 (non-free) modules and its tools. It also runs 
in polynomial-time (depending on an additional, precomputable quantity).


  ePrint 2024/441

m = 4k

1

1 :

Theorem (Mureau, Pellet—Mary, Pliatsok, W.)  
Let  be a totally real number field with ring of integers . 
There is an algorithm that solves modLIP over rank 2 free -modules in heuristic polynomial-time (in ).

F 𝒪F
𝒪F ρF, [F : ℚ]
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ModLIP in rank 2, over CM-extensions

Alexandre Wallet, Maths for PQC workshop, 5/08/2024



Back to the general case (or almost)

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

For simplicity: let  where  is a primitive root of unity, and . Assume .


We can write   and    (and similarly for ).


So we can recover  if we can compute all sums of four squares that give .

K = ℚ(ζ) ζ F = ℚ(ζ + ζ−1) i ∈ K

x = xℝ + ix𝕀 ∈ K = F + iF x*x = x2
ℝ + x2

𝕀 y, z, w

B g0, g1

Gpub = [ g0 ⋆
⋆ g1 ] = [x*x + y*y ⋆

⋆ z*z + w*w] = B*B
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Back to the general case (or almost)

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

For simplicity: let  where  is a primitive root of unity, and . Assume .


We can write   and    (and similarly for ). 


So we can recover  if we can compute all sums of four squares that give .


This links to Lagrange’s four square theorem:

K = ℚ(ζ) ζ F = ℚ(ζ + ζ−1) i ∈ K

x = xℝ + ix𝕀 ∈ K = F + iF x*x = x2
ℝ + x2

𝕀 y, z, w

B g0, g1

Gpub = [ g0 ⋆
⋆ g1 ] = [x*x + y*y ⋆

⋆ z*z + w*w] = B*B

Every integer can be written as the sum of four integers squared.

We need:

• An algorithmic version of it

• An extension to cyclotomic integers

At least two proofs:

• a geometric one with short vectors (mostly for prime integers)

• an algebraic proof using quaternions
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Geometric view1

The nice case: cyclotomic modLIP over  (1/2)𝒪2
K

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

  Thomas and Heorhii, ePrint 2024/11481 :

(x
y)

( z
w)

(−y*
x* )

𝒪2
K

 with  and  (a basis of )


Another interesting basis: . 

 
It is essentially unitary:   


G = B*B B = [x z
y w] det B = 1 𝒪2

K

S = [x −y*
y x* ]

S*S = g0 ⋅ I2
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 with  and  (a basis of )


Another interesting basis: . 

 
It is essentially unitary: .


Coordinate-wise: 


  is a public hypercubic lattice, and it has a 
secret orthogonal basis .

G = B*B B = [x z
y w] det B = 1 𝒪2

K

S = [x −y*
y x* ]

S*S = g0 ⋅ I2

B−1S = [1 −g01

0 g0 ] =: T

⇒ ℒ(T*)
S*

Geometric view1

The nice case: cyclotomic modLIP over  (1/2)𝒪2
K

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

  Thomas and Heorhii, ePrint 2024/11481 :

(x
y)

( z
w)

(−y*
x* )

𝒪2
K
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(x
y)

( z
w)

(−y*
x* )

𝒪2
K

Geometric view1

The nice case: cyclotomic modLIP over  𝒪2
K

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

  Thomas and Heorhii, ePrint 2024/11481 :

The lattice spanned by  is similar to 

lattices from two-squares:





where : -1 is a two-squares sums mod 


 
Conclusion : 
An oracle to compute an orthogonal basis in a hyper cubic 
lattice recovers .

T* = [ 1 0
−g*01 g0]

ℒ(g0) = {(a, b) ∈ 𝒪2
K : g*01a − b = 0 [g0]}

g*01g01 ≡ − 1 [g0] g0

1

(x, y)

Observation:


 is actually a matrix representation 

for a quaternion.

S = [x −y*
y x* ]
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Sprinkles of quaternion algebra

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Let , and  such that  and .i2 = − 1 j −ji = ij =: k j2 = k2 = − 1

There is an involution extending the conjugation:





There is a norm map extending the relative norm from :


(a + ib + jc + kd)* = a − ib − jc − kd
F(i) |F

Nrd(a + ib + jc + kd) = a2 + b2 + c2 + d2 ∈ F

Using that , we can represent elements as 
matrices of multiplication:


𝒜 = K + Kj

x + yj ↦ [x −y*
y x* ]

𝒜 := F⟨i, j⟩

K = F(i)

F

∼ F + iF + jF + kF

∼ F + iF

⊂
⊂

Quaternion algebra

CM-extension of F

Totally real number field
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Now that we have more algebra:

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Gpub = [g0 g01
⋅ g1 ] = [x*x + y*y x*z + y*w

⋅ z*z + w*w] = B*B

Observations: 


• We have not used the anti-diagonal term  yet

• As we reduced to sums-of-squares computations, maybe we can mimic the previous strategy

g01
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Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Gpub = [g0 g01
⋅ g1 ] = [x*x + y*y x*z + y*w

⋅ z*z + w*w] = B*B

The non commutative-settings brings a lot of inconveniences:

Unique factorisation 
 in prime ideals

Yes Not for sided ideals

Maximal ring of integers 1 Many

Roots of unity Straightforward Depends on the subring

Algorithms for norm equations Some poly-time All known exp-time

F(i) F⟨i, j⟩

Now that we have more algebra:

50

3

Observations: 


• We have not used the anti-diagonal term  yet

• As we reduced to sums-of-squares computations, maybe we can mimic the previous strategy

g01



 with  and  (a basis of )


Another interesting basis: . 

 
It is essentially unitary: .


G = B*B B = [x z
y w] det B = 1 𝒪2

K

S = [x −y*
y x* ]

S*S = g0 ⋅ I2

Geometric view1

The nice case: cyclotomic modLIP over  (2/2)𝒪2
K

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

  Thomas and Heorhii, ePrint 2024/11481 :

•  identifies to the maximal order . 
It is generated by  and .


• The matrix  represents the quaternion , so:




Lemma: we can compute a basis of  from the 
public data.


𝒪2
K 𝒪K + 𝒪K j

α = x + yj β = z + wj

S x + yj
S−1B = T ⇒ α−1β = g−1

0 (g01 + j)

α(𝒪K + 𝒪K j)

Quaternion view2

   with Clémence, Guilhem, Alice and Pierre-Alain, ePrint 2024/11472 :

The lattice spanned by  is similar to 

lattices from two-squares:


 

where : -1 is a two-squares sums mod 

 
 
Conclusion : 
An oracle to compute an orthogonal basis in a hyper cubic 
lattice recovers .

T* = [ 1 0
−g*01 g0]

ℒ(g0) = {(a, b) ∈ 𝒪2
K : g*01a − b = 0 [g0]}

g*01g01 ≡ − 1 [g0] g0

1

(x, y)

x + yj

z + wj

−y* + x*j

𝒪K + 𝒪K j

51

3



 with  and  (a basis of )


Another interesting basis: . 

 
It is essentially unitary: .


G = B*B B = [x z
y w] det B = 1 𝒪2

K

S = [x −y*
y x* ]

S*S = g0 ⋅ I2

Geometric view1

The nice case: cyclotomic modLIP over  (2/2)𝒪2
K

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

  Thomas and Heorhii, ePrint 2024/11481 :

•  identifies to the maximal order . 
It is generated by  and .


• The matrix  represents the quaternion , so:




Lemma: we can compute a basis of  from the 
public data.


We have the norm of  since .


 we recover  if we can compute generators of 
principal ideals given their relative norm.

𝒪2
K 𝒪K + 𝒪K j

α = x + yj β = z + wj

S x + yj
S−1B = T ⇒ α−1β = g−1

0 (g01 + j)

α(𝒪K + 𝒪K j)

α Nrd(α) = g0

⇒ α

Quaternion view2

   with Clémence, Guilhem, Alice and Pierre-Alain, ePrint 2024/11472 :

The lattice spanned by  is similar to 

lattices from two-squares:


 

where : -1 is a two-squares sums mod 

 
 
Conclusion : 
An oracle to compute an orthogonal basis in a hyper cubic 
lattice recovers .

T* = [ 1 0
−g*01 g0]

ℒ(g0) = {(a, b) ∈ 𝒪2
K : g*01a − b = 0 [g0]}

g*01g01 ≡ − 1 [g0] g0

1

(x, y)

x + yj

z + wj

−y* + x*j

𝒪K + 𝒪K j
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Geometric view1

The nice case: cyclotomic modLIP over  𝒪2
K

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

  Thomas and Heorhii, ePrint 2024/11481 :

Quaternion view2

   with Clémence, Guilhem, Alice and Pierre-Alain, ePrint 2024/11472 :

The lattice spanned by  is hyper-cubic:


 

Conclusion : 
An oracle to compute an orthogonal basis in a hyper cubic 
lattice recovers . 


(We do not know efficient algorithms to compute orthogonal 
bases in large dimension.) 

T* = [ 1 0
−g*01 g0]

ℒ(g0) = {(a, b) ∈ 𝒪2
K : g*01a − b = 0 [g0]}

1

(x, y)

The public data gives a principal ideal , and we 
know the reduced norm of this generator.

 

Conclusion :  
Cyclotomic modLIP over  reduces to the quaternion 
version of the Principal Ideal with Relative Norm Problem. 


(We do not know an extension of Gentry-Szydlo’s algorithm 
for  this non-commutative setting)

(x + yj)𝒪

2

𝒪2
K
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Conclusion for modLIP over CM-extensions

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

• In ePrint 2024/1147, we extend the reduction to rank 2 non-free modules. 

• The reduction technique works as well directly over  totally real:

✓No need for randomization anymore

✓This gives a provable polynomial time algorithm for totally real modLIP! 

(see also an independent work  for an equivalent result with a different approach)

F

1

Theorem(s) ([insert the list of peeps]):  
Let  be a CM-extension with ring of integers . 

ModLIP over rank 2 free -modules reduces to 


K |F 𝒪K

𝒪K

Computing short orthogonal bases of hypercubic lattices
Solving the Principal (Left)-ideal problem given the reduced 
norm of a generator (in quaternion algebras){

  H. Luo, K. Jiang, Y. Pan and A. Wang, ePrint 2024/11731 :
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Time to wrap-up!



Another reduction (ePrint 2024/1173)

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Theorem : Let  be a CM-extension. If an additional symplectic automorphism  of  is given, then  
free-modLIP  can be solved in polynomial time.

1 K |F ϕj 𝒪2
K

B
K

  H. Luo, K. Jiang, Y. Pan and A. Wang, ePrint 2024/11731 :   H. Lenstra, A. Silverberg: arXiv 1706.073732 :

Very high level idea: 


• Knowing  , one can construct a CM-order  in which  is a principal ideal lattice.


• Lenstra-Silverberg’s  applies: it computes a generator of  in polynomial time.


• This generator essentially corresponds to a column of the secret basis, up to an isometry of . 


• (Consequence of Kronecker) Isom( ) is a known finite group of polynomial size.

ϕj 𝔒 𝒪2
K

2 𝒪2
K

𝒪2
K

𝒪2
K
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Another reduction (ePrint 2024/1173)

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

  H. Luo, K. Jiang, Y. Pan and A. Wang, ePrint 2024/11731 :   H. Lenstra, A. Silverberg: arXiv 1706.073732 :

My very rough understanding is:


•  corresponds to  in the quaternion.

• We need to know its action over the secret basis, but we only know its action in « the canonical one ».

• The article shows that one can easily compute the action of  in the secret basis from public data.

ϕj j

τ := [ j] ∘ ⋅*

57
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Theorem : Let  be a CM-extension. If an additional symplectic automorphism  of  is given, then  
free-modLIP  can be solved in polynomial time.

1 K |F ϕj 𝒪2
K

B
K
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ModLIP  
rank 2

𝒪K

Free ModLip 

rank 1

𝔒
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squares

ModLIP  
rank n

𝒪K

ModLIP  
rank n’

𝒪′ 

 non-commutative

Exp time

𝔒  CM-order

Poly time
𝔒

Short bases of 
hypercubic lattices

Primes

ϕj

Study of -modular 
lattices

g

Relax the requirement?

Specific algorithms 
for hyperstructured 

lattices?

Hawk

Me, finishing  
the presentation

The audience

THANK YOU!


