Sums-of-squares and module lattice isomorphisms

Alexandre Wallet, PQ Shield

Mathematics for PQC Workshop, Budapest, 5-9/08/2024

The Lattice Isomorphism Problem (LIP)

The Lattice Isomorphism Problem (LIP)

A computational version: Given $\mathbf{B}' = \mathbf{OBU}$, with \mathbf{O} orthogonal and $\mathbf{U} \in GL_n(\mathbb{Z})$, compute \mathbf{O} or \mathbf{U} .

¹: L. Ducas and W. Van Woerden, e.g. ePrint 2021/1332 Alexandre Wallet, Maths for PQC workshop, 5/08/2024

$\mathbf{G} = \mathbf{U}^t \mathbf{U}$ **OU**

¹: L. Ducas and W. Van Woerden, e.g. ePrint 2021/1332 Alexandre Wallet, Maths for PQC workshop, 5/08/2024

$\mathbf{G} = \mathbf{U}^t \mathbf{U}$ **OU**

¹: L. Ducas and W. Van Woerden, e.g. ePrint 2021/1332 Alexandre Wallet, Maths for PQC workshop, 5/08/2024

$\mathbf{G} = \mathbf{U}^t \mathbf{U}$ **OU**

Proof of knowledge from LIP^{\perp}

: L. Ducas and W. Van Woerden, e.g. ePrint 2021/1332 Alexandre Wallet, Maths for PQC workshop, 5/08/2024

¹: L. Ducas and W. Van Woerden, e.g. ePrint 2021/1332 Alexandre Wallet, Maths for PQC workshop, 5/08/2024

S

Observation:

Any $\mathbf{V} \in \operatorname{GL}_n(\mathbb{Z})$ such that $\mathbf{V}^t \mathbf{V} = \mathbf{G}$ allows to convince the verifier.

(Run the protocol with V instead of U).

The Lattice Isomorphism Problem (LIP), with quadratic forms

Two quadratic forms G, G' are integrally congruent when $G' = U^t G U$ for some congruence matrix $U \in GL_n(\mathbb{Z})$.

LIP^B: Given **B**, $\mathbf{G} = \mathbf{B}^t \mathbf{B}$ and $\mathbf{G}' \sim_{\mathbb{Z}} \mathbf{G}$, find any congruence matrix **U** between **G** and **G**'.

Hawk¹ and module lattices

New context:

 $m = 2^{\ell}, K = \mathbb{Q}(\zeta_m)$, and $\mathcal{O}_K := \mathbb{Z}[\zeta_m]$ (for ζ_m primitive). Identify \mathbb{Z}^m with \mathcal{O}_K^2 , a free module lattice of rank 2. Transpose becomes conjugate-transpose

(Free-)Mod-LIP^B_K: Given B, $G = B^*B$ and $G' \sim_{\mathcal{O}_K} G$, find any congruence matrix U between G and G'.

: https://hawk-sign.info, also ePrint 2022/1155 (L. Ducas, E. Postlethwaite, L. Pulles and W. Van Woerden. See also Wessel's talk! Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Hawk¹ and module lattices

New context:

 $m = 2^{\ell}, K = \mathbb{Q}(\zeta_m)$, and $\mathcal{O}_K := \mathbb{Z}[\zeta_m]$ (for ζ_m primitive). Identify \mathbb{Z}^m with \mathcal{O}_K^2 , a free module lattice of rank 2. Transpose becomes conjugate-transpose

Two forms G, G' are \mathcal{O}_{K} -congruent when $G' = U^*GU$ for some congruence matrix $U \in GL_n(\mathcal{O}_K)$. (Free-)Mod-LIP^B_K: Given B, $G = B^*B$ and $G' \sim_{\mathcal{O}_K} G$, find any congruence matrix U between G and G'.

: https://hawk-sign.info, also ePrint 2022/1155 (L. Ducas, E. Postlethwaite, L. Pulles and W. Van Woerden. See also Wessel's talk! Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Why not using ideal lattices?

Say $K = \mathbb{Q}(\zeta)$, a cyclotomic field, the lattice is \mathcal{O}_K .

We pick a private unit $u \in \mathcal{O}_{K}^{\times}$, and publish the **totally real** element $g = u^{*}u$.

Observation:

The congruence class is then the set of solutions of the relative norm equation

N(x) = g,

where $N: K \to F, N(a) = a^*a$.

Do not use ideal lattice because there are polynomial time algorithms¹ for this!

(But this information is useful for the rest of the talk!)

:Gentry-Szydlo's algorithm for cyclotomic fields, Lenstra-Silverberg for general « CM-orders ».

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

For all $\sigma: K \to \mathbb{C}$ $\sigma(g) \in \mathbb{R}_+$

F is the field fixed by \cdot^* (A totally real field)

Now what's the plan for today?

Mod-LIP^B_K: Given **B**, $\mathbf{G} = \mathbf{B}^*\mathbf{B}$ and $\mathbf{G}' \sim_{\mathcal{O}_K} \mathbf{G}$, find any congruence matrix **U** between **G** and **G**'.

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Target: ModLIP over Rank 2, Free, module lattices

Fermat's two squares problem

A heuristic polynomial time algorithm to solve ModLIP over totally real number fields

Lagrange's four square theorem, quaternions: new reductions for ModLIP over CM-extension fields

State of affairs, perspectives, open questions

ModLIP in rank 2 over totally real fields

aka.

Fermat's « two squares » theorem

The totally real version of ModLip

$$\mathbf{G}_{pub} = \begin{bmatrix} g_0 & \star \\ \star & g_1 \end{bmatrix} = \begin{bmatrix} x^2 + y^2 & \star \\ \star & z^2 + y \end{bmatrix}$$

So we can recover the key if we can compute all sums of two squares giving g_0, g_1 .

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

The totally real version of ModLip

Now, we let K be

The a totally real number field (all embeddings map to
$$\mathbb{R}$$
) and $\mathbf{B} = \begin{bmatrix} x & z \\ y & w \end{bmatrix}$
 $\mathbf{G}_{pub} = \begin{bmatrix} g_0 & \star \\ \star & g_1 \end{bmatrix} = \begin{bmatrix} x^2 + y^2 & \star \\ \star & z^2 + w^2 \end{bmatrix} = \mathbf{B} * \mathbf{B}$

So we can recover the key if we can compute all sums of two squares giving g_0, g_1 .

This links back to *Fermat's two squares theorem:*

- A prime integer p is the sum of two integers squared if and only if $p \equiv 1$ [4].
- The set of integers that can be written as the sums of two squares is:

$$S_{2}(\mathbb{Z}) := \{ 2^{e} \cdot \prod_{p \equiv 1 \, [4]} p^{v_{p}} \cdot \prod_{p \equiv 3 \, [4]} p^{2v_{p}} : q \in \mathbb{Z} \}$$

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

 $e, v_p \in \mathbb{N}\}$

We need:

- An algorithmic version of it
- An extension to algebraic integers

 $S_2(\mathbb{Z})$ is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $S_2(\mathbb{Z})$.

Proof with geometry

We look at $p = x^2 + y^2$, that is $x^2 \equiv -y^2 [p]$.

Proof with geometry We look at $p = x^2 + y^2$, that is $x^2 \equiv -y^2 [p]$. 1. -1 is a square mod $p \Leftrightarrow p \equiv 1$ [4]. Let $u^2 \equiv -1[p]$. 2. Define $\mathscr{L}(p) = \{(a, b) \in \mathbb{Z}^2 : au - b \equiv 0 \lceil p \rceil\}$. For $v \in \mathscr{L}(p)$, we have $||v||^2 = a^2 + b^2 \in p\mathbb{Z}$. A basis is $\begin{vmatrix} 1 & 0 \\ u & p \end{vmatrix}$.

$S_2(\mathbb{Z})$ is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $S_2(\mathbb{Z})$.

 $S_2(\mathbb{Z})$ is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $S_2(\mathbb{Z})$.

Proof with geometry We look at $p = x^2 + y^2$, that is $x^2 \equiv -y^2 [p]$. 1. -1 is a square mod $p \Leftrightarrow p \equiv 1$ [4]. Let $u^2 \equiv -1[p]$. 2. Define $\mathscr{L}(p) = \{(a, b) \in \mathbb{Z}^2 : au - b \equiv 0[p]\}.$ For $v \in \mathscr{L}(p)$, we have $||v||^2 = a^2 + b^2 \in p\mathbb{Z}$. A basis is $\begin{vmatrix} 1 & 0 \\ u & p \end{vmatrix}$. And we have $\lambda_1(\mathscr{L}(p))^2 < 2p$.

Minkowski's theorem (in rank 2)

Let \mathscr{L} be a lattice of rank 2. The shortest vector in $\mathscr{L} \{0\}$ has length:

$$\lambda_1(\mathscr{L})^2 \leq \frac{4}{\pi} \cdot \det(\mathscr{L}).$$

Proof with geometry

We look at $p = x^2 + y^2$, that is $x^2 \equiv -y^2 [p]$.

- 1. -1 is a square mod $p \Leftrightarrow p \equiv 1$ [4]. Let $u^2 \equiv -1[p]$.
- 2. Define $\mathscr{L}(p) = \{(a, b) \in \mathbb{Z}^2 : au b \equiv 0 \lceil p \rceil\}$. For $v \in \mathscr{L}(p)$, we have $||v||^2 = a^2 + b^2 \in p\mathbb{Z}$.

A basis is $\begin{vmatrix} 1 & 0 \\ u & p \end{vmatrix}$. And we have $\lambda_1(\mathscr{L}(p))^2 < 2p$.

3. Any shortest vector gives a two-square sum for p. Compute them with Gauss-Lagrange's algorithm.

$S_2(\mathbb{Z})$ is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $S_2(\mathbb{Z})$.

 $(\mathscr{L}(p))$ is similar to \mathbb{Z}^2)

 $S_2(\mathbb{Z})$ is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $S_2(\mathbb{Z})$.

Proof with geometry

We look at $p = x^2 + y^2$, that is $x^2 \equiv -y^2 [p]$.

- 1. -1 is a square mod $p \Leftrightarrow p \equiv 1$ [4]. Let $u^2 \equiv -1[p]$.
- 2. Define $\mathscr{L}(p) = \{(a, b) \in \mathbb{Z}^2 : au b \equiv 0[p]\}.$
- 3. Any shortest vector gives a two-square sum for p. Compute them with Gauss-Lagrange's algorithm.

Proof with arithmetic

In the Gauss integers $\mathbb{Z}[i]$, we have: p = N(x + iy) := (x + iy)(x - iy).

1. *p* factors $\Leftrightarrow T^2 + 1$ factors modulo *p* Its discriminant is $\Delta = -4$. It is a square mod p iff -1 is a square modulo p.

 $S_2(\mathbb{Z})$ is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $S_2(\mathbb{Z})$.

Proof with geometry

We look at $p = x^2 + y^2$, that is $x^2 \equiv -y^2 [p]$.

- 1. -1 is a square mod $p \Leftrightarrow p \equiv 1$ [4]. Let $u^2 \equiv -1[p]$.
- 2. Define $\mathscr{L}(p) = \{(a, b) \in \mathbb{Z}^2 : au b \equiv 0[p]\}$.
- 3. Any shortest vector gives a two-square sum for p. Compute them with Gauss-Lagrange's algorithm.

Proof with arithmetic

In the Gauss integers $\mathbb{Z}[i]$, we have: p = N(x + iy) := (x + iy)(x - iy).

- 1. p factors $\Leftrightarrow -1$ is a square modulo p.
- 2. Then $T^2 + 1 = (T a)(T b) \mod p$.

Two conjugate primes above p. One is $\mathfrak{p} = \langle p, i - a \rangle$.

 $S_2(\mathbb{Z})$ is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $S_2(\mathbb{Z})$.

Proof with geometry

We look at $p = x^2 + y^2$, that is $x^2 \equiv -y^2 [p]$.

- 1. -1 is a square mod $p \Leftrightarrow p \equiv 1$ [4]. Let $u^2 \equiv -1[p]$.
- 2. Define $\mathscr{L}(p) = \{(a, b) \in \mathbb{Z}^2 : au b \equiv 0[p]\}$.
- 3. Any shortest vector gives a two-square sum for p. Compute them with Gauss-Lagrange's algorithm.

Proof with arithmetic

In the Gauss integers $\mathbb{Z}[i]$, we have: p = N(x + iy) := (x + iy)(x - iy).

- 1. p factors $\Leftrightarrow -1$ is a square modulo p.
- 2. Then $T^2 + 1 = (T a)(T b) \mod p$. Two conjugate primes above p. One is $\mathfrak{p} = \langle p, i - a \rangle$.
- 3. $\mathbb{Z}[i]$ is *Euclidean*: compute gcd of p and i a with Euclidean division to obtain a generator x + iy of \mathfrak{p} .
- 4. Do the same for \mathfrak{p}^* , loop over all units in $\mathbb{Z}[i]$ to get all generators.

 $S_2(\mathbb{Z})$ is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $S_2(\mathbb{Z})$.

Proof with geometry

We look at $p = x^2 + y^2$, that is $x^2 \equiv -y^2 [p]$.

- 1. -1 is a square mod $p \Leftrightarrow p \equiv 1$ [4]. Let $u^2 \equiv -1[p]$.
- 2. Define $\mathscr{L}(p) = \{(a, b) \in \mathbb{Z}^2 : au b \equiv 0[p]\}$.
- 3. Any shortest vector gives a two-square sum for p. Compute them with Gauss-Lagrange's algorithm.

Proof with arithmetic

In $\mathbb{Z}[i]$, we have p = N(x + iy) := (x + iy)(x - iy).

- 1. p factors $\Leftrightarrow -1$ is a square modulo p.
- 2. Compute $p\mathbb{Z}[i] = \mathfrak{p}\mathfrak{p}^*$ by factoring $T^2 + 1 \mod p$.
- 3. Compute generators of $\mathfrak{p}, \mathfrak{p}^*$. Products of them and units give two-square sums.

 $S_2(\mathbb{Z})$ is stable by multiplication. With unique factorization into primes, the main task is understanding primes that are in $S_2(\mathbb{Z})$.

Proof with geometry

We look at $p = x^2 + y^2$, that is $x^2 \equiv -y^2 [p]$.

- 1. -1 is a square mod $p \Leftrightarrow p \equiv 1 [4]$. \blacksquare **Reciprocity** \blacksquare 1. p factors $\Leftrightarrow -1$ is a square modulo p. Let $u^2 \equiv -1[p]$.
- 2. Define $\mathscr{L}(p) = \{(a, b) \in \mathbb{Z}^2 : au b \equiv 0 \lceil p \rceil\}$.
- 3. Any shortest vector gives a two-square sum for p. Compute them with Gauss-Lagrange's algorithm.

Gauss-Lagrange is very similar to Euclidean division

Let $F = \mathbb{Q}(\zeta + \zeta^{-1})$, with ζ a primitive root of unity, and $\mathcal{O}_F = \mathbb{Z}[\zeta + \zeta^{-1}]$.

We have $\alpha = x^2 + y^2$, for some $x, y \in \mathcal{O}_F$. No unique factorization anymore.

Instead we have unique factorization in prime ideals: αO

$$\widehat{\mathcal{D}}_F = \prod_{\mathfrak{p}} \mathfrak{p}^{\mathcal{V}_{\mathfrak{p}}}.$$

Let $F = \mathbb{Q}(\zeta + \zeta^{-1})$, with ζ a primitive root of unity, and $\mathcal{O}_F = \mathbb{Z}[\zeta + \zeta^{-1}]$.

We have $\alpha = x^2 + y^2$, for some $x, y \in \mathcal{O}_F$. No unique factorization anymore.

Instead we have unique factorization in prime ideals: αO_{i}

Analog of $\mathbb{Q}(i)$ is F(i), and reciprocity is now factoring $T^2 + 1$ modulo \mathfrak{p} . That is, \mathfrak{p} splits when Δ is a square in the finite field $\mathcal{O}_F/\mathfrak{p}$.

$$\mathcal{F}_F = \prod_{\mathfrak{p}} \mathfrak{p}^{\mathcal{V}_{\mathfrak{p}}}.$$

Let $F = \mathbb{Q}(\zeta + \zeta^{-1})$, with ζ a primitive root of unity, and $\mathcal{O}_F = \mathbb{Z}[\zeta + \zeta^{-1}]$.

We have $\alpha = x^2 + y^2$, for some $x, y \in \mathcal{O}_F$. No unique factorization anymore.

Instead we have unique factorization in prime ideals: αO

Above, we have $\alpha \mathcal{O}_{F(i)} = (x + iy)\mathcal{O}_{F(i)} \cdot (x - iy)\mathcal{O}_{F(i)}$.

These ideals: 1) must share the prime factors of α 2) have **conjugated** prime factors.

This implies
$$\alpha \mathcal{O}_{F(i)} = \prod_{\mathfrak{P} \text{ splits}} (\mathfrak{PP})^{v_{\mathfrak{P}}} \cdot \prod_{\mathfrak{P} \text{ inert}} \mathfrak{P}^{2v_{\mathfrak{P}}}.$$

$$\widehat{\mathcal{D}}_F = \prod_{\mathfrak{p}} \mathfrak{p}^{\mathcal{V}_{\mathfrak{p}}}.$$

$$\mathfrak{P} \mathcal{O}_{F(i)} = \begin{cases} \mathfrak{P} \mathfrak{P}^* , \text{ if } \mathfrak{P} \text{ splits} \\ \mathfrak{P} & , \text{ if } \mathfrak{P} \text{ is inert} \\ (\mathfrak{P}^2 & , \text{ if } \mathfrak{P} \text{ ramifie}) \end{cases}$$

Let $F = \mathbb{Q}(\zeta + \zeta^{-1})$, with ζ a primitive root of unity, and $\mathcal{O}_F = \mathbb{Z}[\zeta + \zeta^{-1}]$.

We have $\alpha = x^2 + y^2$, for some $x, y \in \mathcal{O}_F$. No unique factorization anymore.

Instead we have unique factorization in prime ideals: αO_{i}

Above, we have
$$\alpha \mathcal{O}_{F(i)} = (x + iy)\mathcal{O}_{F(i)} \cdot (x - iy)\mathcal{O}_{F(i)}$$

$$= \prod_{\mathfrak{p} \ splits} (\mathfrak{P}\mathfrak{P}^*)^{\nu_{\mathfrak{P}}} \cdot \prod_{\mathfrak{p} \ inert} \mathfrak{p}^{2\nu_{\mathfrak{p}}}.$$

Theorem (up to ramification): The set of elements in \mathcal{O}_F that can be written as the sum $S_2(\mathcal{O}_F) = \{ \alpha \in \mathcal{O}_F : \alpha \mathcal{O}_F = \square \mathfrak{p}^{v_\mathfrak{p}} \cdot$ **p** splits

$$\mathcal{P}_F = \prod_{\mathfrak{p}} \mathfrak{p}^{\mathcal{V}_{\mathfrak{p}}}.$$

$$\mathfrak{P} \mathcal{O}_{F(i)} = \begin{cases} \mathfrak{P} \mathfrak{P}^* , \text{ if } \mathfrak{P} \text{ splits} \\ \mathfrak{P} & , \text{ if } \mathfrak{P} \text{ is inert} \\ (\mathfrak{P}^2 & , \text{ if } \mathfrak{P} \text{ ramified} \end{cases}$$

of two
$$\mathcal{O}_{F}$$
-squares is
$$\prod_{p \text{ inert}} p^{2v_{p}} \}$$

From two-squares to module lattices isomorphisms

Observations:

- 1) We can compute these primes given α
- 2) Must be at least one principal ideal $(x + iy)\mathcal{O}_{F(i)}$ among all meaningful products of these primes

Observations:

- 1) We can compute these primes given α
- 2) Must be at least one principal ideal $(x + iy)\mathcal{O}_{F(i)}$ among all meaningful products of these primes

To test if an ideal is principal in number fields and to compute a generator is a (classically) hard problem!

And we may not even find the correct generator...

Observations:

- 1) We can compute these primes given α
- 2) Must be at least one principal ideal $(x + iy)\mathcal{O}_{F(i)}$ among all meaningful products of these primes
- 3) We know the relative norm $N_{F(i)|F}(x + iy) = \alpha$.

Recover generators up to roots of unity

Observations:

- 1) We can compute these primes given α
- 2) Must be at least one principal ideal $(x + iy) \mathcal{O}_{F(i)}$ among all meaningful products of these primes
- 3) We know the relative norm $N_{F(i)|F}(x + iy) = \alpha$.

Gentry-Szydlo's algorithm:

There is a **polynomial time** algorithm that, given a basis of an ideal *I* in a cyclotomic field, and a candidate β for the relative norm of a potential generator g of I:

- Decides if *I* is principal; 1)
- 2) If it is, returns an element $g' = \rho g$ where ρ is a root of unity in the field.

Recover generators up to roots of unity

Observations:

- 1) We can compute these primes given α
- 2) Must be at least one principal ideal $(x + iy) \mathcal{O}_{F(i)}$ among all meaningful products of these primes
- 3) We know the relative norm $N_{F(i)|F}(x + iy) = \alpha$.
- 4) We can also compute the roots of unity in F(i).

Recover all **useful** generators, in polynomial time, by solving relative norm equations

An algorithm to compute sums-of-squares

Input: $\alpha \in \mathcal{O}_F$ Output : the set $S_2(\alpha)$ of all possible $(x, y) \in \mathcal{O}_F^2$ such that $x^2 + y^2 = \alpha$. 1. Factor $\alpha \mathcal{O}_F = \prod \mathfrak{p}^{v_\mathfrak{p}} \cdot \prod \mathfrak{q}^{v_\mathfrak{q}}$; set $\mathcal{S} = \mathcal{O}$; if one $v_\mathfrak{q}$ is not even, return \mathcal{S} . inerts splits 2. For all $0 \le e_{\mathfrak{p}} \le v_{\mathfrak{p}}$, do: a. Compute $I = \prod \mathfrak{P}^{e_{\mathfrak{P}}}(\mathfrak{P}^*)^{v_{\mathfrak{P}}-e_{\mathfrak{P}}} \cdot \prod \mathfrak{q}^{v_{\mathfrak{q}}/2}$ and set $\mathscr{G} = \emptyset$ inerts b. $g \leftarrow \text{GentrySzydlo}(I, \alpha);$ c. If $g \neq \bot$, set $\mathscr{G} = \{ \rho \cdot g : \rho \text{ root of unity in } F(i) \}$. d. For all $g' \in \mathcal{G}$, write g' = x + iy and $\mathcal{S} = \mathcal{S} \cup \{(x, y)\}$ 3. Return $\mathcal{S} \cap \mathcal{O}_F^2$.

An algorithm to compute sums-of-squares

Input: $\alpha \in \mathcal{O}_F$ Output : the set $S_2(\alpha)$ of all possible $(x, y) \in \mathcal{O}_F^2$ such that $x^2 + y^2 = \alpha$. 1. Factor $\alpha \mathcal{O}_F = [\mathfrak{p}^{v_{\mathfrak{p}}} \cdot [\mathfrak{q}^{v_{\mathfrak{q}}}; \text{ set } \mathcal{S} = \mathcal{O}; \text{ if one } v_{\mathfrak{q}} \text{ is not even, return } \mathcal{S}.$ inerts splits 2. For all $0 \le e_{\mathfrak{p}} \le v_{\mathfrak{p}}$, do: a. Compute $I = \qquad \mathfrak{P}^{e_{\mathfrak{P}}}(\mathfrak{P}^*)^{v_{\mathfrak{P}}-e_{\mathfrak{P}}} \cdot \qquad \mathfrak{q}^{v_{\mathfrak{q}}/2} \text{ and set } \mathscr{G} = \emptyset$ inerts splitters b. $g \leftarrow \text{GentrySzydlo}(I, \alpha);$ c. If $g \neq \bot$, set $\mathscr{G} = \{ \rho \cdot g : \rho \text{ root of unity in } F(i) \}$. d. For all $g' \in \mathcal{G}$, write g' = x + iy and $\mathcal{S} = \mathcal{S} \cup \{(x, y)\}$ 3. Return $\mathcal{S} \cap \mathcal{O}_F^2$.

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Not polynomial time if the factorization is not given.

Possibly many combinations

$\mathcal{O}_F + i\mathcal{O}_F \subsetneq \mathcal{O}_{F(i)}$ in general

An algorithm to solve totally real modLIP

Input: the public Gram matrix $\mathbf{G} = \mathbf{B}^t \mathbf{B} = \begin{bmatrix} g_0 & \star \\ \star & g_1 \end{bmatrix}$ and a matrix \mathbf{C} such that $\mathbf{C}^t \mathbf{C} = \mathbf{U}^t \mathbf{G} \mathbf{U}$

Output : the set of $\mathbf{U} \in GL_2(\mathcal{O}_F)$ describing the congruence class of \mathbf{G}

- 1. For $b \in \{0,1\}$:
 - a. $\mathcal{S}_{b} \leftarrow \text{TwoSquares}(g_{b})$
- 2. Let $\mathcal{U} = \emptyset$. For all $(a, b), (a', b') \in \mathcal{S}_0 \times \mathcal{S}_1$:

a.
$$\mathbf{D} \leftarrow \begin{bmatrix} a & a' \\ b & b' \end{bmatrix}$$

b. If $\mathbf{V} = \mathbf{C}^{-1}\mathbf{D}$ is a congruence matrix for \mathbf{G} , set $\mathcal{U} = \mathcal{U} \cup {\mathbf{V}}$.

3. Return \mathcal{U} .

Theorem (Mureau, Pellet – Mary, Pliatsok, W.) This algorithm returns (a description of) the congruence class of G.

Possibly many steps.

Towards polynomial time: the randomization step (1/2)

With $\mathbf{G} = \mathbf{B}^t \mathbf{B}$, from vectors in \mathscr{O}_F^2 we can learn the norm of vectors in $\mathscr{L}(\mathbf{B})$: $(x, y)\mathbf{G}(x, y)^{t} = (x, y)\mathbf{B}^{t} \cdot \mathbf{B}(x, y)^{t} = a^{2} + b^{2}$

If we have two that are linearly independent, we deduce congruence matrices by linear algebra: $\mathbf{D} = \mathbf{C}\mathbf{V} \sim \mathbf{D}' = \mathbf{C}\mathbf{V}\mathbf{X}$

<u>Lemma</u>: we can sample Gaussians $(x, y) \in \mathcal{O}_F^2$ so that $\mathbf{B}(x, y)$ is spherical, without knowing **B**. (This way we have at least some control over (a, b))

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

- **Goal:** avoid factoring and control loops to achieve (classic) polynomial time

 $(a,b) = \mathbf{B}(x,y)$

 $\mathbf{X} = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix}$

Towards polynomial time: the randomization step (2/2)

Randomization step: feed *random* vectors $(x, y) \in \mathcal{O}_F^2$ to **G** until:

- Two of them span the space
- These two have a prime relative norm, that is, $(x, y)\mathbf{G}(x, y)^t = a^2 + b^2$ is a prime in \mathcal{O}_F .
- ⇒ compute the corresponding sum of squares without having to factor! \Rightarrow primes in F have at most two divisors in F(i) so poly([$F:\mathbb{Q}$]) steps in the loop at worst.

Heuristic assumption:

With large enough width, $q := a^2 + b^2$ behaves like a « uniformly random » principal ideal.

(GRH) Proba
$$(q \text{ is prime}) \approx \frac{1}{\rho_F \cdot \ln N(q)}$$
 , ρ_F residue at

- **Goal:** avoid factoring and control loops to achieve (classic) polynomial time

- of the Dedekind zeta function of F.

Conclusion for modLIP over totally real fields

Theorem (Mureau, Pellet – Mary, Pliatsok, W.)

Let F be a totally real number field with ring of integers \mathcal{O}_F .

- The full algorithm is implemented for cyclotomic fields with conductor m = 4k. https://gitlab.inria.fr/capsule/code-for-module-lip
- In the paper¹, we provide an algorithm for rank 2 (non-free) modules and its tools. It also runs in polynomial-time (depending on an additional, precomputable quantity).

: ePrint 2024/441

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

There is an algorithm that solves modLIP over rank 2 free \mathcal{O}_F -modules in heuristic polynomial-time (in ρ_F , $[F:\mathbb{Q}]$).

ModLIP in rank 2, over CM-extensions

Back to the general case (or almost)

For simplicity: let $K = \mathbb{Q}(\zeta)$ where ζ is a primitive root of unity, and $F = \mathbb{Q}(\zeta + \zeta^{-1})$. Assume $i \in K$.

$$\mathbf{G}_{pub} = \begin{bmatrix} g_0 & \star \\ \star & g_1 \end{bmatrix} = \begin{bmatrix} x^*x + y^*y \\ \star & z^*z \end{bmatrix}$$

We can write $x = x_{\mathbb{R}} + ix_{\mathbb{I}} \in K = F + iF$ and $x^*x = x_{\mathbb{R}}^2$

So we can recover **B** if we can compute all sums of four squares that give g_0, g_1 .

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

 $\star \\ *_{z + w} *_{w} = \mathbf{B} * \mathbf{B}$

+
$$x_{\mathbb{I}}^2$$
 (and similarly for y, z, w).

Back to the general case (or almost)

For simplicity: let $K = \mathbb{Q}(\zeta)$ where ζ is a primitive root of unity, and $F = \mathbb{Q}(\zeta + \zeta^{-1})$. Assume $i \in K$.

$$\mathbf{G}_{pub} = \begin{bmatrix} g_0 & \star \\ \star & g_1 \end{bmatrix} = \begin{bmatrix} x^*x + y^*y \\ \star & z^*z \end{bmatrix}$$

We can write $x = x_{\mathbb{R}} + ix_{\mathbb{I}} \in K = F + iF$ and $x^*x = x_{\mathbb{R}}^2$

So we can recover **B** if we can compute all sums of four squares that give g_0, g_1 .

This links to Lagrange's four square theorem: Every integer can be written as the sum of four integers squared.

At least two proofs:

- a geometric one with short vectors (mostly for prime integration)
- an algebraic proof using **quaternions**

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

 $\star = \mathbf{B} \ast \mathbf{B}$

$$+ x_{\mathbb{I}}^2$$
 (and similarly for y, z, w).

	We need:
egers)	 An algorithmic version of it An extension to cyclotomic integers

The nice case: cyclotomic modLIP over \mathcal{O}_{K}^{2} (1/2)

Geometric view¹ $\mathbf{G} = \mathbf{B} * \mathbf{B}$ with $\mathbf{B} = \begin{bmatrix} x & z \\ y & w \end{bmatrix}$ and det $\mathbf{B} = 1$ (a basis of \mathcal{O}_K^2) Another interesting basis: $\mathbf{S} = \begin{bmatrix} x & -y^* \\ y & x^* \end{bmatrix}$. It is essentially unitary: $S^*S = g_0 \cdot I_2$

: Thomas and Heorhii, ePrint 2024/1148

The nice case: cyclotomic modLIP over \mathcal{O}_{K}^{2} (1/2)

Geometric view¹ $\mathbf{G} = \mathbf{B} * \mathbf{B}$ with $\mathbf{B} = \begin{bmatrix} x & z \\ y & w \end{bmatrix}$ and det $\mathbf{B} = 1$ (a basis of \mathcal{O}_K^2) Another interesting basis: $\mathbf{S} = \begin{bmatrix} x & -y^* \\ y & x^* \end{bmatrix}$. It is essentially unitary: $S^*S = g_0 \cdot I_2$. Coordinate-wise: $\mathbf{B}^{-1}\mathbf{S} = \begin{vmatrix} 1 & -g_{01} \\ 0 & g_0 \end{vmatrix} =: \mathbf{T}$

 $\Rightarrow \mathscr{L}(T^*)$ is a public hypercubic lattice, and it has a secret orthogonal basis S^* .

: Thomas and Heorhii, ePrint 2024/1148

The nice case: cyclotomic modLIP over \mathcal{O}_{K}^{2}

Geometric view¹

The lattice spanned by $\mathbf{T}^* = \begin{bmatrix} 1 & 0 \\ -g_{01}^* & g_0 \end{bmatrix}$ is similar to lattices from two-squares:

$$\mathcal{L}(g_0) = \{(a,b) \in \mathcal{O}_K^2 : g_{01}^*a - b = 0 \ [g_0]\}$$

where $g_{01}^*g_{01} \equiv -1$ [g_0]: -1 is a two-squares sums mod g_0

Conclusion¹:

An oracle to compute an orthogonal basis in a hyper cubic lattice recovers (x, y).

¹: Thomas and Heorhii, ePrint 2024/1148

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Z

$$\mathbf{S} = \begin{bmatrix} x & -y^* \\ y & x^* \end{bmatrix}$$

is actually a matrix representation

for a **quaternion**.

 $\begin{pmatrix} -y^* \\ x^* \end{pmatrix}$

 \mathcal{O}_K

Sprinkles of quaternion algebra

Let $i^2 = -1$, and *j* such that -ji = ij =: k and $j^2 = k^2 = -1$.

Quaternion algebra IJ CM-extension of FIJ F

Totally real number field

There is an involution extending the conjugation:

$$(a+ib+jc+kd)^* = a-ib-jc-kd$$

There is a norm map extending the relative norm from F(i) | F: $Nrd(a + ib + jc + kd) = a^2 + b^2 + c^2 + d^2 \in F$

$\mathscr{A} := F\langle i, j \rangle \quad \sim F + iF + jF + kF$ $K = F(i) \sim F + iF$

Using that $\mathcal{A} = K + Kj$, we can represent elements as matrices of multiplication:

$$\begin{array}{ccc} x + yj \mapsto \begin{bmatrix} x & -y^* \\ y & x^* \end{bmatrix}$$

Now that we have more algebra:

$$\mathbf{G}_{pub} = \begin{bmatrix} g_0 & g_{01} \\ \cdot & g_1 \end{bmatrix} = \begin{bmatrix} x^*x + y^*y & x^*z + y^*w \\ \cdot & z^*z + w^*w \end{bmatrix} = \mathbf{B}^*\mathbf{B}$$

Observations:

- We have not used the anti-diagonal term g_{01} yet
- As we reduced to sums-of-squares computations, maybe we can mimic the previous strategy

Now that we have more algebra:

$$\mathbf{G}_{pub} = \begin{bmatrix} g_0 & g_{01} \\ \cdot & g_1 \end{bmatrix} = \begin{bmatrix} x^*x + y^*y & x^*z + y^*w \\ \cdot & z^*z + w^*w \end{bmatrix} = \mathbf{B}^*\mathbf{B}$$

Observations:

- We have not used the anti-diagonal term g_{01} yet
- As we reduced to sums-of-squares computations, maybe we can mimic the previous strategy

The non commutative-settings brings a lot of inconveniences:

	F(i)	$F\langle i,j \rangle$
Unique factorisation in prime ideals	Yes	Not for sided ideals
Maximal ring of integers	1	Many
Roots of unity	Straightforward	Depends on the subring
Algorithms for norm equations	Some poly-time	All known exp-time

The nice case: cyclotomic modLIP over \mathcal{O}_{K}^{2} (2/2)

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Quaternion view²

- \mathcal{O}_{K}^{2} identifies to the maximal order $\mathcal{O}_{K} + \mathcal{O}_{K} j$. It is generated by $\alpha = x + yj$ and $\beta = z + wj$.
- The matrix **S** represents the quaternion x + yj, so: $\mathbf{S}^{-1}\mathbf{B} = \mathbf{T} \Rightarrow \alpha^{-1}\beta = g_0^{-1}(g_{01} + j)$

<u>Lemma</u>: we can compute a basis of $\alpha(\mathcal{O}_K + \mathcal{O}_K j)$ from the public data.

²: with Clémence, Guilhem, Alice and Pierre-Alain, ePrint 2024/1147

The nice case: cyclotomic modLIP over \mathcal{O}_{K}^{2} (2/2)

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Quaternion view²

- \mathcal{O}_{K}^{2} identifies to the maximal order $\mathcal{O}_{K} + \mathcal{O}_{K} j$. It is generated by $\alpha = x + yj$ and $\beta = z + wj$.
- The matrix **S** represents the quaternion x + yj, so: $\mathbf{S}^{-1}\mathbf{B} = \mathbf{T} \Rightarrow \alpha^{-1}\beta = g_0^{-1}(g_{01} + j)$

<u>Lemma</u>: we can compute a basis of $\alpha(\mathcal{O}_K + \mathcal{O}_K j)$ from the public data.

We have the norm of α since Nrd(α) = g_0 .

 \Rightarrow we recover α if we can compute generators of principal ideals given their relative norm.

²: with Clémence, Guilhem, Alice and Pierre-Alain, ePrint 2024/1147

The nice case: cyclotomic modLIP over \mathcal{O}_{K}^{2}

Geometric view¹

The lattice spanned by $\mathbf{T}^* = \begin{bmatrix} 1 & 0 \\ -g_{01}^* & g_0 \end{bmatrix}$ is hyper-cubic: $\mathscr{L}(g_0) = \{ (a, b) \in \mathcal{O}_K^2 : g_{01}^* a - b = 0 \ [g_0] \}$

Conclusion¹:

An oracle to compute an orthogonal basis in a hyper cubic lattice recovers (x, y).

(We do not know efficient algorithms to compute orthogonal) bases in large dimension.)

: Thomas and Heorhii, ePrint 2024/1148

Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Quaternion view² The public data gives a principal ideal (x + yj)O, and we know the reduced norm of this generator. **Conclusion**²: Cyclotomic modLIP over \mathcal{O}_{K}^{2} reduces to the quaternion version of the Principal Ideal with Relative Norm Problem. (We do not know an extension of Gentry-Szydlo's algorithm) for this **non-commutative setting**)

²: with Clémence, Guilhem, Alice and Pierre-Alain, ePrint 2024/1147

Conclusion for modLIP over CM-extensions

Theorem(s) ([insert the list of peeps]): Let K | F be a CM-extension with ring of integers \mathcal{O}_K .

ModLIP over rank 2 free \mathcal{O}_K -modules reduces to Solvin norm

- In ePrint 2024/1147, we extend the reduction to rank 2 non-free modules.
- The reduction technique works as well directly over *F* totally real:

 ✓No need for randomization anymore
 ✓This gives a *provable* polynomial time algorithm for totally real modLIP!
 (see also an independent work¹ for an equivalent result with a different approach)

¹: H. Luo, K. Jiang, Y. Pan and A. Wang, ePrint 2024/1173 Alexandre Wallet, Maths for PQC workshop, 5/08/2024 Computing short orthogonal bases of hypercubic lattices Solving the Principal (Left)-ideal problem given the reduced norm of a generator (in quaternion algebras)

Time to wrap-up!

Another reduction (ePrint 2024/1173)

Theorem¹: Let K | F be a CM-extension. If an additional symplectic automorphism ϕ_i of \mathcal{O}_K^2 is given, then free-modLIP^B_K can be solved in polynomial time.

Very high level idea:

- Knowing ϕ_i , one can construct a CM-order \mathfrak{D} in which \mathscr{O}_K^2 is a principal ideal lattice.
- Lenstra-Silverberg's² applies: it computes a generator of \mathcal{O}_{K}^{2} in polynomial time.
- This generator essentially corresponds to a column of the secret basis, up to an isometry of \mathcal{O}_K^2 .
- (Consequence of Kronecker) Isom(\mathcal{O}_{K}^{2}) is a known finite group of polynomial size.

: H. Luo, K. Jiang, Y. Pan and A. Wang, ePrint 2024/1173 Alexandre Wallet, Maths for PQC workshop, 5/08/2024

Another reduction (ePrint 2024/1173)

Theorem¹: Let K|F be a CM-extension. If an additional symplectic automorphism ϕ_i of \mathcal{O}_K^2 is given, then free-modLIP^B_K can be solved in polynomial time.

My very rough understanding is:

- ϕ_i corresponds to j in the quaternion.
- We need to know its action over the secret basis, but we only know its action in « the canonical one ».
- The article shows that one can easily compute the action of $\tau := [j] \circ \cdot^*$ in the secret basis from public data.

: H. Luo, K. Jiang, Y. Pan and A. Wang, ePrint 2024/1173 Alexandre Wallet, Maths for PQC workshop, 5/08/2024

²: H. Lenstra, A. Silverberg: arXiv 1706.07373

