### On the Ring-LWE and Polynomial-LWE problems

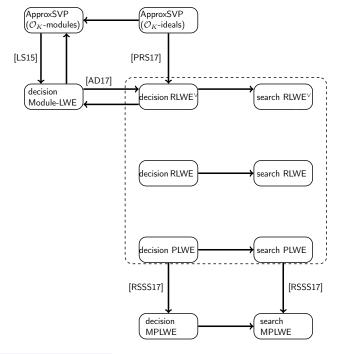
#### Miruna Roșca, Damien Stehlé, Alexandre Wallet

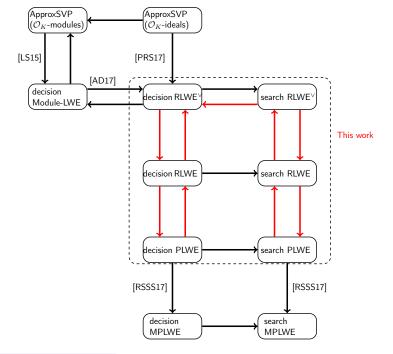






Alexandre Wallet





"On variants of Polynomial-LWE and Ring-LWE" (joint work with M. Rosça and D. Stehlé, submitted)

Results: (A) The 3 settings are essentially<sup>†</sup> the same (B) Search = Decision in all settings.

†: for a large number of "reasonable" polynomials, up to polynomial factors on noise, assuming some information about the field are known.

### LWE and Cryptography

- Regev's encryption scheme
- Learning With Errors (LWE) and its hardness
- 2 Ring-based LWE
- 3 Reductions between Ring-based LWE's
- 4 Search to Decision

# An encryption scheme [Regev'05]

n "security parameter", q prime,  $n \leq m \leq poly(n)$ ,  $\chi$  distribution over  $\mathbb{Z}_q = \mathbb{Z}/q\mathbb{Z}$ .

AliceEvilBruno
$$\mathbf{s} \in \mathbb{Z}_q^n$$
 $\mu \in \{0, 1\}$  $\mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{Z}_q), e_i \leftrightarrow \chi$  $\longrightarrow$  $\begin{pmatrix} \mathbf{A} \\ \mathbf{a} \end{pmatrix}$  $\mathbf{b} = \mathbf{A} \quad \mathbf{s} + \mathbf{e} \mod q$ 

# An encryption scheme [Regev'05]

n "security parameter", q prime,  $n \leq m \leq poly(n)$ ,  $\chi$  distribution over  $\mathbb{Z}_q = \mathbb{Z}/q\mathbb{Z}$ .

AliceEvilBruno
$$\mathbf{s} \in \mathbb{Z}_q^n$$
 $\mu \in \{0, 1\}$  $\mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{Z}_q), \ e_i \leftrightarrow \chi$  $\longrightarrow$  $\left( \begin{array}{c} \mathbf{A} \\ \end{array}, \begin{array}{c} \mathbf{b} \end{array} \right)$  $\mathbf{b} = \left[ \mathbf{A} \right] \stackrel{\mathbf{s}}{\mathbf{s}} + \left[ \mathbf{e} \right] \mod q$  $\leftarrow$  $(\mathbf{a}', b')$  $\mathbf{e}' = b' - \langle \mathbf{a}', \mathbf{s} \rangle \mod q$  $\leftarrow$  $(\mathbf{a}', b')$  $\mathbf{e}' = b' - \langle \mathbf{a}', \mathbf{s} \rangle \mod q$  $\leftarrow$  $(\mathbf{a}', b')$ 

# An encryption scheme [Regev'05]

n "security parameter", q prime,  $n \leq m \leq poly(n)$ ,  $\chi$  distribution over  $\mathbb{Z}_q = \mathbb{Z}/q\mathbb{Z}$ .

AliceEvilBruno
$$\mathbf{s} \in \mathbb{Z}_q^n$$
 $\mu \in \{0, 1\}$  $\mathbf{A} \in \mathcal{M}_{m \times n}(\mathbb{Z}_q), e_i \leftrightarrow \chi$  $\longrightarrow$  $(\mathbf{A}, \mathbf{b})$  $\mathbf{b} = \mathbf{A}$  $\mathbf{s} + \mathbf{e}$  $\mod q$  $e' = b' - \langle \mathbf{a}', \mathbf{s} \rangle$  $\longleftarrow$  $(\mathbf{a}', b')$  $\leftarrow = \mathbf{b}' - \langle \mathbf{a}', \mathbf{s} \rangle$  $\leftarrow = (\mathbf{a}', b')$  $\leftarrow = \mathbf{E}_{\mathbf{A}, \mathbf{b}}(\mu) = (\sum_{i \in \mathcal{I}} \mathbf{a}_i, \sum_{i \in \mathcal{I}} b_i + \mu \lfloor \frac{q}{2} \rfloor)$  $\mathsf{Dec}_{\mathbf{s}}(\mathbf{a}', b') = \begin{cases} 0 \text{ if } e' \sim 0 \\ 1 \text{ if } e' \sim \frac{q}{2} \end{cases}$  $\xleftarrow$  $\mathsf{Correctness: } q, m, \chi \text{ chosen s.t. } e' = \sum e_i \leq \frac{q}{4} \text{ whp.}$  $\mu = 0$  $\mu = 1$  $\stackrel{\bullet}{\longrightarrow}$  $\stackrel{\bullet}{\longrightarrow}$  $= 0$  $\mu = 1$  $\stackrel{\bullet}{\longrightarrow}$  $\frac{q}{2}$  $= 0$  $\mu = 1$  $\stackrel{\bullet}{\longrightarrow}$  $\frac{q}{2}$ 

# Learning With Errors [R'05]

 $n \in \mathbb{N}^*$ ,  $q \leq poly(n)$  a prime  $\mathbb{Z}_q := \mathbb{Z}/q\mathbb{Z}.$ 

 $\chi \rightarrow D_r$  discrete Gaussian distribution

**LWE distribution:** Fix  $\mathbf{s} \in \mathbb{Z}_q^n$ .

$$A_{\mathbf{s},D_r}: \begin{cases} \mathbf{a} \leftrightarrow \mathcal{U}(\mathbb{Z}_q^n) \\ e \leftrightarrow D_r \\ \text{outputs } (\mathbf{a}, b = (\langle \mathbf{a}, \mathbf{s} \rangle + e) \mod q ) \end{cases}$$

Search-LWE<sub>q,r</sub>: From  $\left( m \bigwedge_{\leftarrow \rightarrow n}^{\uparrow} \mathbf{A} \right)$ ,  $\mathbf{b} = \mathbf{A} \cdot \mathbf{S} + \mathbf{e}$ , find  $\mathbf{S}$ 

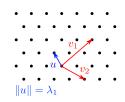
# Hardness [R'05]

**Decision-LWE**<sub>q,D<sub>r</sub></sub>: Given  $(\mathbf{a}_i, b_i)_{i \leq m}$  either from  $A_{\mathbf{s},D_r}$  or  $\mathcal{U}(\mathbb{Z}_q^n \times \mathbb{Z}_q)$ , decide which one was given.

Lattice  $\mathcal{L} = \mathbf{A}\mathbb{Z}^n$ ,  $\lambda_1 = \text{length of a shortest vector in } \mathcal{L} \setminus \{0\}$ .

**ApproxSVP**<sub> $\gamma$ </sub>: Given d > 0, decide if  $\lambda_1 \leq d$  or  $\lambda_1 > d\gamma$ .

| For general lattices: | time     | poly(n)                                                        | $2^{O(n)}$ |
|-----------------------|----------|----------------------------------------------------------------|------------|
|                       | $\gamma$ | $\begin{array}{c} poly(n) \\ 2^{\widetilde{O}(n)} \end{array}$ | poly(n)    |



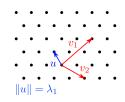
# Hardness [R'05]

**Decision-LWE**<sub>q,D<sub>r</sub></sub>: Given  $(\mathbf{a}_i, b_i)_{i \leq m}$  either from  $A_{\mathbf{s},D_r}$  or  $\mathcal{U}(\mathbb{Z}_q^n \times \mathbb{Z}_q)$ , decide which one was given.

Lattice  $\mathcal{L} = \mathbf{A}\mathbb{Z}^n$ ,  $\lambda_1 = \text{length of a shortest vector in } \mathcal{L} \setminus \{0\}$ .

**ApproxSVP**<sub> $\gamma$ </sub>: Given d > 0, decide if  $\lambda_1 \leq d$  or  $\lambda_1 > d\gamma$ .







# LWE in practice

| <ul> <li>Perks:</li> <li>✓ simple description, simple operations</li> <li>✓ flexible parameters, many possibilities</li> <li>✓ post-quantum</li> </ul> | Drawbacks:<br>× key-size<br>× speed (compared to other)                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| Frodo <sup>†</sup> VS<br>(NIST competitor)                                                                                                             | Current crypto<br>RSA 3072-bits ECDH nistp256                                                                           |  |
| Public key $\sim 11$ KBytes<br>Handshake $\sim 2.5$ ms                                                                                                 | $\begin{array}{lll} \sim 400 \mbox{ bytes} & 32 \mbox{ bytes} \\ & \sim 5 \mbox{ ms} & \sim 1.3 \mbox{ ms} \end{array}$ |  |

†: [BCD++'17]

### LWE and Cryptography

#### 2 Ring-based LWE

- Polynomial-LWE: ideal lattices
- Ring-LWE: more algebraic number theory

### 3 Reductions between Ring-based LWE's

### 4 Search to Decision

### Add structure: ideal lattices

Change  $\mathbb{Z} \rightsquigarrow R = \mathbb{Z}[X]/f$ f monic, irreducible, degree n.

#### polynomials

$$s = \sum s_i X^i \in R_q = R/qR$$

Product:  $a \cdot s \mod f$ 

Good example:  $f = X^n + 1, n = 2^d$ .

#### vectors/matrices

$$\mathbf{s} = (s_0, \dots, s_{n-1}) \in \mathbb{Z}_q^n$$

Mult. by a = use **Toeplitz matrix** 

$$T_f(a) = \begin{bmatrix} a_0 & a_1 & \dots & a_{n-1} \\ -a_{n-1} & a_0 & \dots & a_{n-2} \\ \vdots & & \ddots & \vdots \\ -a_1 & -a_2 & \dots & a_0 \end{bmatrix}$$

### Add structure: ideal lattices

Change  $\mathbb{Z} \rightsquigarrow R = \mathbb{Z}[X]/f$ f monic, irreducible, degree n.

#### polynomials

$$s = \sum s_i X^i \in R_q = R/qR$$
  
Product:  $a \cdot s \mod f$ 

Good example:  $f = X^n + 1, n = 2^d$ .

#### vectors/matrices

$$\mathbf{s} = (s_0, \dots, s_{n-1}) \in \mathbb{Z}_q^n$$

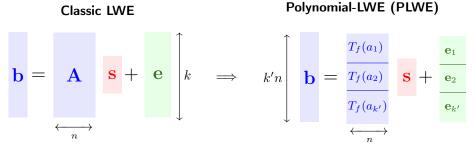
Mult. by a = use **Toeplitz matrix** 

$$T_f(a) = \begin{bmatrix} a_0 & a_1 & \dots & a_{n-1} \\ -a_{n-1} & a_0 & \dots & a_{n-2} \\ \vdots & & \ddots & \vdots \\ -a_1 & -a_2 & \dots & a_0 \end{bmatrix}$$

Noise:  $e = \sum e_i X^i, e_i \leftrightarrow D_{r_i}$ . Sample:  $(a, b = a \cdot s + e \mod qR)$ 

$$\mathbf{e} = (e_0, \dots, e_{n-1}) \in \mathbb{R}^n$$

$$(\mathbf{a}, b = T_f(\mathbf{a}) \cdot \mathbf{s}^\top + \mathbf{e} \mod q)$$



1 PLWE sample = n correlated LWE samples.

# PLWE and its hardness [SSTX'09]

$$\begin{split} R &= \mathbb{Z}[X]/f \\ f \text{ monic, irreducible, degree } n. \end{split}$$

 $\vec{r} = \operatorname{diag}(r_i)_{i \leq n}, r_i \geq 0$  $D_{\vec{r}}$  *n*-dimensional **Gaussian**.

 $\mathsf{PLWE}_{q,\vec{r},f}$  distribution: Fix  $s \in R_q$ 

$$\mathcal{B}_{\boldsymbol{s},D_{\vec{r}}}: \begin{cases} \boldsymbol{a} \leftarrow \mathcal{U}(R_q) \\ \boldsymbol{e} \leftarrow D_{\vec{r}} \\ \text{outputs } (\boldsymbol{a}, \boldsymbol{b} = (\boldsymbol{a} \cdot \boldsymbol{s} + \boldsymbol{e}) \bmod qR) \end{cases}$$

Search-PLWE<sub>q, $\vec{r}, f$ </sub> and Decision-PLWE<sub>q, $\vec{r}, f$ </sub> defined as before.

# PLWE and its hardness [SSTX'09]

$$\begin{split} R &= \mathbb{Z}[X]/f \\ f \text{ monic, irreducible, degree } n. \end{split}$$

 $\vec{r} = \operatorname{diag}(r_i)_{i \leq n}, r_i \geq 0$  $D_{\vec{r}}$  *n*-dimensional **Gaussian**.

 $\mathsf{PLWE}_{q,\vec{r},f}$  distribution: Fix  $s \in R_q$ 

$$\mathcal{B}_{s,D_{\vec{r}}}: \begin{cases} a \leftarrow \mathcal{U}(R_q) \\ e \leftarrow D_{\vec{r}} \\ \text{outputs } (a, b = (a \cdot s + e) \bmod qR) \end{cases}$$

**Search-PLWE**<sub>q, $\vec{r},f$ </sub> and **Decision-PLWE**<sub>q, $\vec{r},f$ </sub> defined as before.

polynomial **ideal:**  $aR = \{ \text{multiples of } a \text{ in } R \} \mapsto T_f(a) \cdot \mathbb{Z}^n : \text{ ideal lattice} \}$ 

Solve Search-PLWE  $\Rightarrow$  solve ApproxSVP $_{\gamma}$  in ideal lattices for  $\gamma \leq poly(n)$ .

### Practice vs. Theory

#### Perks:

- $\checkmark\,$  fast and compact operations
- ✓ still post-quantum

New Hope<sup>†</sup> (NIST competitor) Public key:  $\sim 2$  KBytes

Handshake:  $\sim 0.3 \text{ ms}$ 

#### **Theoretical limitations:**

- $\checkmark \gamma$  depends on f's "expansion factor"
- **X** Working with R relies too much on f
- $\rightarrow\,$  Restricts "good f 's"
- $\rightarrow\,$  Difficult proofs, lacks tools and flexibility

†: [ADPS'15]

### Number fields and rings

 $R = \mathbb{Z}[X]/f$  is a number ring. Lives in  $K = \mathbb{Q}[X]/f$ , a number field.

**Structure:**  $K = \text{Span}_{\mathbb{O}}(1, X, \dots, X^{n-1})$  where  $n = \deg f$ 

Field embeddings:  $\sigma_j(a) = \sum a_i \alpha_j^i \in \mathbb{C}$  where  $f = \prod_{i < n} (X - \alpha_j)$ .

f has  $s_1$  real roots and  $2s_2$  (conjugate) complex roots.

### Number fields and rings

 $R = \mathbb{Z}[X]/f$  is a number ring. Lives in  $K = \mathbb{Q}[X]/f$ , a number field.

**Structure:**  $K = \text{Span}_{\mathbb{Q}}(1, X, \dots, X^{n-1})$  where  $n = \deg f$ 

Field embeddings:  $\sigma_j(a) = \sum a_i \alpha_j^i \in \mathbb{C}$  where  $f = \prod_{i \leq n} (X - \alpha_j)$ .

f has  $s_1$  real roots and  $2s_2$  (conjugate) complex roots.

The space  $H = \{(v_1, ..., v_n) \in \mathbb{R}^{s_1} \times \mathbb{C}^{2s_2} : \forall i \ge 1, v_{i+s_1+s_2} = \overline{v_{i+s_1}}\}.$ 

Two representations

**Coefficient embedding** 

 $a \mapsto \mathbf{a} = (a_0, \dots, a_{n-1}) \in \mathbb{Q}^n$ 

Minkowski embedding

$$a \longmapsto \sigma(a) = (\sigma_1(a), \dots, \sigma_n(a)) \in H$$
$$\sigma(ab) = (\sigma_i(a)\sigma_i(b))_{i \le n}$$

### The ring of algebraic integers

 $\mathcal{O}_K = \{x \in K \text{ roots of monic polynomials in } \mathbb{Z}[X] \}$ 

It is a lattice:  $\mathcal{O}_K = \mathbb{Z}b_1 + \ldots + \mathbb{Z}b_n$  for some  $b_i \in \mathcal{O}_K$   $(b_i \neq 0)$ . Dual (lattice):  $\mathcal{O}_K^{\vee} = \{ \mathbf{y} \in H : \forall \mathbf{x} \in \mathcal{O}_K, \langle \mathbf{y}, \mathbf{x} \rangle \in \mathbb{Z} \}.$ 

$$\checkmark \mathcal{O}_K \text{ is a regularization of } R = \mathbb{Z}[X]/f$$
$$- R \subsetneq \mathcal{O}_K \text{ in general}$$

 $\checkmark \mathcal{O}_K$  is intrinsic to K: its structure does not depend on f

It may not be possible to take  $1, X, \ldots, X^{n-1}$  as a basis

Computing a  $\mathbb{Z}$ -basis for  $\mathcal{O}_K$  is usually **hard**.

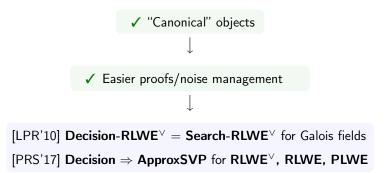
# RLWE [LPR'10]

 $R \rightsquigarrow \mathcal{O}_K$ , use Minkowski embedding. Assume a  $\mathbb{Z}$ -basis of  $\mathcal{O}_K$  is known. 
$$\begin{split} H &= \mathsf{Span}_{\mathbb{R}}(\mathbf{v}_1, \dots, \mathbf{v}_n) \\ D_{\vec{r}}^H : e_i & \hookrightarrow D_{r_i}, \text{ outputs } e = \sum e_i \mathbf{v}_i \in H. \end{split}$$

**RLWE**<sup> $\vee$ </sup><sub> $q, \vec{r}$ </sub> distribution: Fix  $s \in \mathcal{O}_{K,q}^{\vee} := \mathcal{O}_{K}^{\vee}/q\mathcal{O}_{K}^{\vee}$ 

$$\mathcal{A}_{s,D_{\vec{r}}}^{\vee} : \begin{cases} a \leftarrow \mathcal{U}(\mathcal{O}_{K,q}) \\ e \leftarrow D_{\vec{r}}^{H} \\ \text{outputs } (a,b = (as + e) \mod q\mathcal{O}_{K}^{\vee}) \end{cases}$$

Search-RLWE<sup> $\lor$ </sup><sub> $q,\vec{r}$ </sub> and Decision-RLWE<sup> $\lor$ </sup><sub> $q,\vec{r}$ </sub> defined as before. "Primal" variant:  $s \in \mathcal{O}_{K,q} := \mathcal{O}_K/q\mathcal{O}_K$ .



### What is left?

- Using  $\textbf{RLWE}^{\vee}$  variants
- $\mathbb{Z}$ -basis of  $\mathcal{O}_K$ ?
- In practice, *f* stays cyclotomic.

 $\rightarrow\,$  Need to deal with  $\mathcal{O}_K^{\vee}$ 

- $\rightarrow$  long precomputations for some f 's,  $\operatorname{\textbf{non-uniform}}$  reductions
- $\rightarrow\,$  What if cyclotomic fields are "weak"?

### (A) Relations between **PLWE**, **RLWE**, **RLWE** $^{\vee}$ ?

(B) Are Decision and Search equivalent in Ring-based LWE?

(C) Are there "weaker" fields for ApproxSVP? For Ring-based LWE?

(D) Are there other (better?) structures than ideal lattices for LWE?

### (A) Relations between **PLWE**, **RLWE**, **RLWE** $^{\vee}$ ?

New Results!

(B) Are Decision and Search equivalent in Ring-based LWE?

- (C) Are there "weaker" fields for ApproxSVP? For Ring-based LWE? "Ill-defined": [EHL'14, ELOS'15, CLS'15, HCS'16]
- (D) Are there other (better?) structures than ideal lattices for LWE? Adressed in [LS'15, AD'17, RSSS'17]

### 1 LWE and Cryptography

### 2 Ring-based LWE

# Reductions between Ring-based LWE's Ontrolled RLWE<sup>∨</sup> to RLWE

- From  $\mathcal{O}_K$  to R with the conductor
- Large families of nice polynomials

### 4 Search to Decision

### Transforming samples [LPR'10, LPR'13]

**Goal:** map  $\mathcal{A}_{s,\Sigma}^{\vee}$  to  $\mathcal{A}_{s',\Sigma'}$  and "uniform" to "uniform"

Want:  $\theta: \begin{array}{ccc} \mathcal{O}_{K,q} \times \mathcal{O}_{K,q}^{\vee} & \longrightarrow & \mathcal{O}_{K,q} \times \mathcal{O}_{K,q} \\ (a,b) & \longmapsto & (a',b') \end{array}$ , respecting the distributions.

## Transforming samples [LPR'10, LPR'13]

 $\begin{array}{ccc} \textbf{Goal:} & \max \mathcal{A}_{s,\Sigma}^{\vee} \text{ to } \mathcal{A}_{s',\Sigma'} \text{ and "uniform" to "uniform"} \\ \textbf{Want:} & \theta : \begin{array}{ccc} \mathcal{O}_{K,q} \times \mathcal{O}_{K,q}^{\vee} & \longrightarrow & \mathcal{O}_{K,q} \times \mathcal{O}_{K,q} \\ (a,b) & \longmapsto & (a',b') \end{array} , \text{ respecting the distributions.} \end{array}$ 

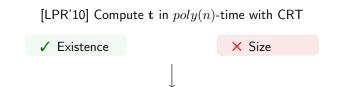
Assume  $\exists \mathbf{t} \in \mathcal{O}_K$  such that  $[\times \mathbf{t}] : \mathcal{O}_{K,q}^{\vee} \simeq \mathcal{O}_{K,q}$ . Let  $\theta_{\mathbf{t}}(a, b) = (a, \mathbf{t}b \mod q)$ .

 $\begin{array}{ll} \mathsf{lf} \ (a,b) \hookleftarrow \mathcal{A}_{s,\Sigma}^{\vee} \\ \mathsf{tb} = a(\mathsf{t}s) + \mathsf{te}, \ \mathsf{te} \leftarrow D_{\Sigma'}^{H} \\ \Sigma' = \mathsf{diag} \left[ |\sigma_i(\mathsf{t})| \right] \cdot \Sigma \cdot \mathsf{diag} \left[ |\sigma_i(\mathsf{t})| \right] \end{array} \end{array} \begin{array}{l} \mathsf{lf} \ (a,b) \hookleftarrow \mathsf{uniform} \\ [\times \mathsf{t}] \ \mathsf{isomorphism} \Rightarrow (a,\mathsf{tb}) \ \mathsf{uniform} \end{array}$ 

Questions:

1) Does such t exist? 2) How large is te?

# From RLWE $^{\vee}$ to RLWE



**Our result:** An adequate t with  $\|\sigma(t)\| \le poly(n)$  exists in an adequate lattice.

Existence

🗸 Size

Consequence: solving  $\mathsf{RLWE}_{q,\Sigma'} \Rightarrow$  solving  $\mathsf{RLWE}_{q,\Sigma}^{\vee}$ 

$$\Sigma' \xleftarrow{poly(n)}{loss} \Sigma$$

### Ingredients and tools

**Our result:** An adequate t with  $\|\sigma(t)\| \le poly(n)$  exists in an adequate lattice.

- Idea: use Gaussian sampling in  $(\mathcal{O}_K^{\vee})^{-1}$ .
- Main difficulty: achieving a small enough standard deviation
  - Require factorization of  $q\mathcal{O}_K$  in prime ideals in  $\mathcal{O}_K$  (non-uniform reduction)

### Ingredients and tools

**Our result:** An adequate t with  $\|\sigma(t)\| \le poly(n)$  exists in an adequate lattice.

- Idea: use Gaussian sampling in  $(\mathcal{O}_K^{\vee})^{-1}$ .
- Main difficulty: achieving a small enough standard deviation
  - Require factorization of  $q\mathcal{O}_K$  in prime ideals in  $\mathcal{O}_K$  (non-uniform reduction)
- Tools:
  - Inclusion/exclusion
  - Case disjonction on factors' size (norm)

- "Smoothness parameters" of lattices
- Tail bounds on Gaussian distributions

### 1 LWE and Cryptography

#### 2 Ring-based LWE

# Beductions between Ring-based LWE's ■ Controlled RLWE<sup>∨</sup> to RLWE

#### • From $\mathcal{O}_K$ to R with the conductor

#### • Large families of nice polynomials

### 4 Search to Decision

### Mapping RLWE to PLWE-like

**Goal:** map  $\mathcal{A}_{s,\Sigma}$  to  $\mathcal{B}_{s',\Sigma'}$  and "uniform" to "uniform"

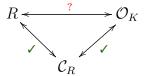
Want: 
$$\theta: \begin{array}{ccc} \mathcal{O}_{K,q} \times \mathcal{O}_{K,q} & \longrightarrow & R_q \times R_q \\ (a,b) & \longmapsto & (a',b') \end{array}$$
, respecting the distributions.

**Result:** We can find  $[\times \mathbf{t}] : \mathcal{O}_{K,q} \simeq R_q$ , such that  $\|\sigma(\mathbf{t})\| \le poly(n)$ , for some  $\mathbf{t}$  in the conductor ideal  $\mathcal{C}_R = \{\mathbf{t} \in K : \mathbf{t}\mathcal{O}_K \subset R\}$ .

### Mapping RLWE to PLWE-like

**Goal:** map  $\mathcal{A}_{s,\Sigma}$  to  $\mathcal{B}_{s',\Sigma'}$  and "uniform" to "uniform" **Want:**  $\theta : \begin{array}{c} \mathcal{O}_{K,q} \times \mathcal{O}_{K,q} & \longrightarrow & R_q \times R_q \\ (a,b) & \longmapsto & (a',b') \end{array}$ , respecting the distributions.

**Result:** We can find  $[\times \mathbf{t}] : \mathcal{O}_{K,q} \simeq R_q$ , such that  $\|\sigma(\mathbf{t})\| \le poly(n)$ , for some  $\mathbf{t}$  in the conductor ideal  $\mathcal{C}_R = \{\mathbf{t} \in K : \mathbf{t}\mathcal{O}_K \subset R\}$ .



 $\mathcal{C}_R$  "interpolates" between R and  $\mathcal{O}_K$ 

Lemma: if 
$$q \not\mid \Delta(f)$$
, then  
 $R_q \simeq C_R / q C_R \simeq \mathcal{O}_{K,q}.$ 

• Control  $\|\sigma(\mathbf{t})\|$  with the same technique as earlier

**Good candidate**:  $\theta_t(a, b) = (ta, t^2b \mod q)$ , for t as above

$$e' = \mathbf{t}^2 e \leftrightarrow D^H_{\Sigma_{\mathbf{t}}}$$
, where  $\Sigma_{\mathbf{t}} = \mathsf{diag}[|\sigma_i(\mathbf{t})|^2] \cdot \Sigma \cdot \mathsf{diag}[|\sigma_i(\mathbf{t})|^2]$ .

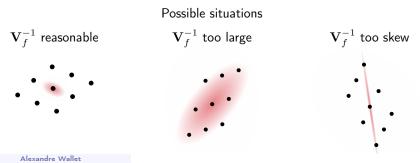
e' lives in H, while **PLWE**<sub>f</sub> asks for "Coefficient" representation.

## "Minkowski" vs "Coefficient"

Relation between embeddings:

$$\sigma(a) = \mathbf{V}_f \cdot \mathbf{a}, \text{ with } \mathbf{V}_f = \begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \dots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^{n-1} \\ \vdots & & & \vdots \\ 1 & \alpha_n & \alpha_n^2 & \dots & \alpha_n^{n-1} \end{bmatrix}$$

New noise: 
$$\mathbf{V}_f^{-1}\sigma(e') \leftrightarrow D_{\Sigma'}$$
, with  $\Sigma' = \mathbf{V}_f^{-\top}\Sigma_{\mathbf{t}}\mathbf{V}_f^{-1}$ 



### Inverse Vandermondes and roots separation

$$\mathbf{V}_{f}^{-1} = \left(rac{S_{i,j}}{\Delta_{j}}
ight)_{i,j}$$
, where  $\Delta_{j} = \prod_{k 
eq j} (lpha_{k} - lpha_{j})$ .

### Main difficulties:

•  $\Delta_j$  can be exponentially small [BM'04]

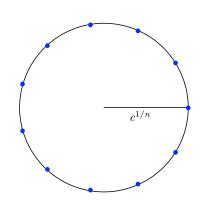


• Bound for a large class of polynomials

**Goal:** A large family of irreducible polynomials in  $\mathbb{Z}[X]$  with  $\|\mathbf{V}_{f}^{-1}\| \leq poly(n)$ .

# Perturbations of a good situation

(1) 
$$f := X^n - c \in \mathbb{Z}[X]$$
, with  $\alpha_j = c^{1/n} e^{2i\pi \frac{j}{n}}$ .  
 $\|\mathbf{V}_f^{-1}\|_{\infty} = 1$ .



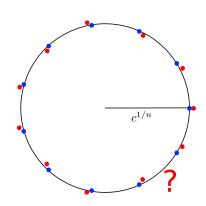
## Perturbations of a good situation

(1) 
$$f := X^n - c \in \mathbb{Z}[X]$$
, with  $\alpha_j = c^{1/n} e^{2i\pi \frac{j}{n}}$ .  
 $\|\mathbf{V}_f^{-1}\|_{\infty} = 1.$ 

(2) Let 
$$P = \sum_{i=1}^{n/2} p_i X^i \in \mathbb{Z}[X].$$

Perturbation:  $g := f + P = \prod_{i=1}^{n} (X - \beta_j)$ 

If "*P* small",  $\beta_i$ 's should stay close to  $\alpha_i$ 's.



## Perturbations of a good situation

(1) 
$$f := X^n - c \in \mathbb{Z}[X]$$
, with  $\alpha_j = c^{1/n} e^{2i\pi \frac{j}{n}}$ .  
 $\|\mathbf{V}_f^{-1}\|_{\infty} = 1.$ 

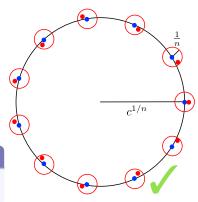
(2) Let  $P = \sum_{i=1}^{n/2} p_i X^i \in \mathbb{Z}[X].$ 

Perturbation:  $g := f + P = \prod_{i=1}^{n} (X - \beta_i)$ 

If "*P* small",  $\beta_i$ 's should stay close to  $\alpha_i$ 's.

### Theorem (Rouché)

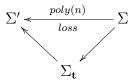
If |P(z)| < |f(z)| on a circle, then f and f + P have the same numbers of zeros inside this circle.



**Result:** We can exhibit exponentially many  $f \in \mathbb{Z}[X]$ , monic and irreducible, such that  $\|\mathbf{V}_{f}^{-1}\| \leq poly(n)$ .

For any such f, we have in  $K_f$ :

solving  $\mathsf{PLWE}_{q,\Sigma',f} \Rightarrow$  solving  $\mathsf{RLWE}_{q,\Sigma}$ 



### Ingredients and tools

**Result:** We can exhibit exponentially many  $f \in \mathbb{Z}[X]$ , monic and irreducible, such that  $\|\mathbf{V}_{f}^{-1}\| \leq poly(n)$ .

- Idea: If  $\beta_i$ 's are close to  $\alpha_i$ 's, then  $\|\mathbf{V}_g^{-1}\| \sim \|\mathbf{V}_f^{-1}\|$ .
- Main difficulty: lower bound on  $|\Delta_j| = \prod_{j \neq k} |\beta_k \beta_j|$ .

### Ingredients and tools

**Result:** We can exhibit exponentially many  $f \in \mathbb{Z}[X]$ , monic and irreducible, such that  $\|\mathbf{V}_{f}^{-1}\| \leq poly(n)$ .

- Idea: If  $\beta_i$ 's are close to  $\alpha_i$ 's, then  $\|\mathbf{V}_g^{-1}\| \sim \|\mathbf{V}_f^{-1}\|$ .
- Main difficulty: lower bound on  $|\Delta_j| = \prod_{j \neq k} |\beta_k \beta_j|$ .
- Steps:
  - Bound |P(z)|, |f(z)| on  $D(\alpha_i, \frac{1}{n}) \Rightarrow$  conditions on  $c, ||P||_1$ .
  - Assume conditions are met. **Rouché's theorem** implies  $|\Delta_j| \ge \prod \left( \underbrace{|\alpha_k - \alpha_j|}_{\text{well-known}} - \frac{2}{n} \right)$
  - Irreducibility when c is a large enough prime

### LWE and Cryptography

- 2 Ring-based LWE
- 3 Reductions between Ring-based LWE's
- 4 Search to Decision

Main idea

Given:  $\begin{pmatrix} \mathbf{A} \\ \mathbf{A} \end{pmatrix}$ ,  $\mathbf{b} = \mathbf{A} \mathbf{s} + \mathbf{e} \end{pmatrix}$ , find good approx. of all  $\sigma_i(e)$ 's  $\mathbf{e} = \frac{\underbrace{e_1}{\vdots}}{e_k} \xrightarrow{\sigma} \sigma(\mathbf{e}) = \frac{\underbrace{\sigma_1(e_1) \mid \dots \mid \sigma_n(e_1)}{\vdots \qquad \vdots}}{\underbrace{\sigma_1(e_k) \mid \dots \mid \sigma_n(e_k)}}$   $\stackrel{\wr}{\begin{bmatrix} \tilde{z}_1 \end{bmatrix}, \dots, \begin{bmatrix} \tilde{z}_n \end{bmatrix}$  Main idea

Given:  $\begin{pmatrix} \mathbf{A} \\ \mathbf{A} \end{pmatrix} = \mathbf{A} \mathbf{s} + \mathbf{e}$ , find good approx. of all  $\sigma_i(e)$ 's  $\mathbf{e} = \frac{\overbrace{\vdots}^{\sigma_1}}{e_k} \xrightarrow{\sigma} \sigma(\mathbf{e}) = \frac{\sigma_1(e_1) \mid \dots \mid \sigma_n(e_1)}{\overbrace{\vdots}^{\sigma_1(e_k) \mid \dots \mid \sigma_n(e_n)}}$  $\begin{bmatrix} \tilde{z}_1 \end{bmatrix}, \ldots, \begin{bmatrix} \tilde{z}_n \end{bmatrix}$ Round  $\sigma$   $\begin{pmatrix} \mathbf{A} & \mathbf{s} + \mathbf{e} \end{pmatrix} - \begin{bmatrix} \tilde{z}_1 | \dots | \tilde{z}_n \end{bmatrix} \rightarrow \sigma \begin{pmatrix} \mathbf{A} & \mathbf{s} \end{pmatrix}$ Invert  $a_i$ 's to obtain **A**<sup>-1</sup>, then  $\sigma$  **(A**<sup>-1</sup>)  $\cdot \sigma$  **(A s**) =  $\sigma$  **(s**)

## Oracle Hidden Center Problem

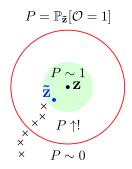
Input: Samples  $(a_i, b_i = a_i s + e_i)_{i \le k}$  from  $\mathcal{A}_{s, \vec{r}}$ An oracle  $\mathcal{O}$  for **Decision-RLWE**.

Want: A good approximation of  $\mathbf{z} = (\sigma_1(e_1), \dots, \sigma_1(e_k))$ 

### Theorem ([PRS'17])

A good approximation of z can be found in poly(n) time by solving the Oracle Hidden Center Problem.

**Goal:** Build a solver  $\mathcal{O}_z$  for **OHCP**<sub>z</sub> from  $\mathcal{O}$ .



### Description of the solver

 $\mathcal{O}_{\mathbf{z}}$  creates new samples, feed them to  $\mathcal{O}$ . Input:  $\tilde{\mathbf{z}} = (\tilde{z}_1, \dots, \tilde{z}_k) \in \mathbb{R}^n_+, \alpha > 0, \delta > 0$ 

**Output:** 1 if  $\mathcal{O}$  accepts the sample, 0 else.

- 1.  $s' \leftrightarrow \mathcal{U}(\mathcal{O}_{K,q})$ 2.  $t_1, \dots, t_k \leftrightarrow D_{\tilde{O}(2^{\alpha})}$  $e' \leftrightarrow D_{\delta}$
- 3.  $a' = \langle \mathbf{t}, \mathbf{a} \rangle$  $b' = \langle \mathbf{b}, \mathbf{t} - \tilde{\mathbf{z}} \rangle + a's' + e'.$
- 4. Outputs  $\mathcal{O}(a',b')$ .

### Description of the solver

 $\mathcal{O}_{\mathbf{z}}$  creates new samples, feed them to  $\mathcal{O}$ . Input:  $\tilde{\mathbf{z}} = (\tilde{z}_1, \dots, \tilde{z}_k) \in \mathbb{R}^n_+, \alpha > 0, \delta > 0$ Output: 1 if  $\mathcal{O}$  accepts the sample, 0 else.

- 1.  $s' \leftrightarrow \mathcal{U}(\mathcal{O}_{K,q})$ 2.  $t_1, \dots, t_k \leftrightarrow D_{\tilde{O}(2^{\alpha})}$  $e' \leftrightarrow D_{\delta}$
- 3.  $a' = \langle \mathbf{t}, \mathbf{a} \rangle$  $b' = \langle \mathbf{b}, \mathbf{t} - \tilde{\mathbf{z}} \rangle + a's' + e'.$
- 4. Outputs  $\mathcal{O}(a',b')$ .

$$b' = a'(\mathbf{s} + s') + \underbrace{\langle \mathbf{t} - \tilde{\mathbf{z}}, \mathbf{e} \rangle + e'}_{\text{controlled Gaussian}}$$
$$a' = \sum_{i \le k} a_i t_i$$
$$(a', b') \text{ is a valid } \mathbf{RLWE}\text{-like sample}$$
$$\underset{a' \approx \text{ uniform}}{\Leftrightarrow}$$

### Description of the solver

 $\mathcal{O}_{\mathbf{z}}$  creates new samples, feed them to  $\mathcal{O}$ . Input:  $\tilde{\mathbf{z}} = (\tilde{z}_1, \dots, \tilde{z}_k) \in \mathbb{R}^n_+, \alpha > 0, \delta > 0$ Output: 1 if  $\mathcal{O}$  accepts the sample, 0 else.

- 1.  $s' \leftrightarrow \mathcal{U}(\mathcal{O}_{K,q})$ 2.  $t_1, \dots, t_k \leftrightarrow D_{\widetilde{O}(2^{\alpha})}$  $e' \leftrightarrow D_{\delta}$
- 3.  $a' = \langle \mathbf{t}, \mathbf{a} \rangle$  $b' = \langle \mathbf{b}, \mathbf{t} - \tilde{\mathbf{z}} \rangle + a's' + e'.$
- 4. Outputs  $\mathcal{O}(a',b')$ .

$$\begin{aligned} b' &= a'(\mathbf{s} + s') + \underbrace{\langle \mathbf{t} - \tilde{\mathbf{z}}, \mathbf{e} \rangle + e'}_{\mathbf{controlled Gaussian}} \\ a' &= \sum_{i \leq k} a_i t_i \\ (a', b') \text{ is a valid } \mathbf{RLWE}\text{-like sample} \\ &\stackrel{\Leftrightarrow}{a'} \approx \underset{\text{uniform}}{\overset{\leftrightarrow}{}} \end{aligned}$$

### **Result:** (Leftover Hash Lemma) The distribution of $(a_1, \ldots, a_k, a')$ is statistically indistinguishable from uniform.

## A ring-based Leftover Hash Lemma

**Result:** (Leftover Hash Lemma) The distribution of  $(a_1, \ldots, a_k, a')$  is statistically indistinguishable from uniform.

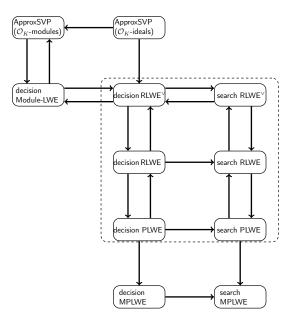
- Idea: Adapting Minkowski-Hlawka theorem to the ring context.
- Main difficulty: Lower bound on  $\lambda_1(\mathbf{a}^{\perp})$ .
- Tools:
  - Duality for *q*-ary module lattices
  - Understand solutions of  $a \cdot x = b$  in the ring  $\mathcal{O}_{K,q}$

- Bound number of lattice points in a ball
- "Smoothness parameters" for lattices

(A) Make reductions uniform.

(B)  $\|V_f^{-1}\| \leq \widetilde{O}(n^{3.5})$  in proof vs.  $\|V_f^{-1}\| \sim 1$  in practice. Improvement?

(C) Are there "weaker" fields for ApproxSVP? For Ring-based LWE?



Thank you :)