

ONVARIANTS OF THE POLYNOMIAL-LWE AND RING-LWE PROBLEMS Alexandre WALLET¹, Miruna Roşca^{1,2}, Damien Stehlé¹ ¹Université de Lyon, ENSL, CNRS, INRIA, UCBL, UMR 5668, LIP, 69000, Lyon, France ²BitDefender, Romania

MOTIVATION

- In lattice-based cryptography, **LWE** is a popular security assumption for **cryptosystems**.
- Hardness from hard lattice problems [1].
- Structured variants use **number rings** [2,3]:
 - \checkmark compact, efficient, thus good candidates for standardization

CONTRIBUTION

We prove the following results:

- all structured variants have essentially computationally equivalent.
- search Ring-LWE = decision Ring-LWE.
 - \Rightarrow clearer security assumptions

PERSPECTIVES

Extend the perturbation technique to other contexts in lattice-based cryptography:

- Cryptanalysis of lattice-based cryptosystems
 - Ring-LWE schemes
 - NTRU-like schemes?
- Design of new cryptographic primitives

 \times several versions with unclear hierarchy, hence unclear security.

Hardness of structured variants?

LEARNING WITH ERRORS

 $\mathbf{A} \in \mathcal{M}_n(\mathbb{Z}_q)$, for some prime q

New techniques for security proofs:

- \checkmark Use of conductor ideals.
- ✓ A perturbation technique to build number fields with wanted geometric properties.

RESULTS AND TOOLS

Mathematical context

 \mathcal{O}_K is the ring of algebraic integer of K. \mathcal{O}_{K}^{\vee} is its dual lattice, or dual fractional ideal. $\mathbb{Z}[X]/f$ is usually a non-maximal order in K.

Tools for proofs

- Harmonic analysis on discrete structures
 - Tail bounds of Gaussian distributions
 - Smoothing parameters of lattices

- tighter bounds on important quantities?
- Computations of short vectors in "perturbed" lattices from known short vectors.

Problems hierarchy

Ring-LWE

 $K = \mathbb{Q}[X]/f$, a number field. $\mathbf{a}_i, \mathbf{s} \in \mathbb{Z}_q[X]/f$, or $\mathcal{O}_K/q\mathcal{O}_K$, or $\mathcal{O}_K^{\vee}/q\mathcal{O}_K^{\vee}$ $T_f(\mathbf{a}_i)$ are **Toeplitz** matrices.

– Duality

- Geometry of numbers, algebraic number theory
 - Factoring algebraic integers
 - ideals in number rings ((co-)different, conductor, etc.)
 - Lattice representations
- Complex analysis and number fields
 - Rouché's theorem to localize roots
 - Condition number of Vandermonde matrices
 - Large family of number fields with wanted properties

DESCRIPTION OF THE PERTURBATION TECHNIQUE

Goal: find a large family of polynomials $f \in \mathbb{Z}[X]$, irreducible over \mathbb{Q} , such that the Vandermonde matrix V_f has condition number polynomially bounded, seen as a function of $n = \deg f$.

BIBLIOGRAPHY

[1] On lattices, Learning With Errors, random linear codes and cryptography, O. Regev, STOC 2005, or Journal of ACM, 2009, 56(6).

Problem: Boils down to finding an upper bound for $||V_f||$ and $||V_f^{-1}||$. To do this, we locate the roots of a large family of polynomials.

Solution: use a perturbation argument over a nice situation:

• Start from a polynomial with well-known roots: $f(X) := X^n - c$.

• Let g(X) := f(X) + P(X), where P is "small" enough so that the roots of g stays, say, within 1/n distance of the roots of f.

• Control the size of *P* using **Rouché's theorem**: If |P(z)| < |f(z)| for all z on the boundary of a disk, then f and f + Phave the same number of roots inside this disk.

Irreducibility achieved by taking c as a large enough prime integer.

[2] Efficient public-key encryption based on ideal lattices, D. Stehlé, R. Steinfeld, K. Tanaka, K. Xagawa, ASIACRYPT 2009.

[3] On ideal lattice and Learning With Errors over rings, V. Lyubashevsky, C. Peikert, O. Regev, EUROCRYPT 2010.

[4] Pseudorandomness of Ring-LWE for any ring and modulus, C. Peikert, O. Regev, N. Stephens-Davidowitz, STOC 2017.

[5] The Middle-Product Learning With Errors, M. Roşca, A. Sakzad, D. Stehlé, R. Steinfeld, CRYPTO 2017.

This work: On variants of the Polynomial-LWE and Ring-LWE problems, M. Roşca, D. Stehlé, A. Wallet, EUROCRYPT 2018.