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Abstract

Computing discrete logarithms is generically a difficult problem. For divisor class
groups of curves defined over extension fields, a variant of the Index-Calculus called De-
composition attack is used, and it can be faster than generic approaches. In this situation,
collecting the relations is done by solving multiple instances of the Point m-Decomposition
Problem (PDPm). An instance of this problem can be modelled as a zero-dimensional poly-
nomial system. Solving is done with Gröbner bases algorithms, where the number of so-
lutions of the system is a good indicator for the time complexity of the solving process.
For systems arising from a PDPm context, this number grows exponentially fast with the
extension degree. To achieve an efficient harvesting, this number must be reduced as much
as possible. Extending the elliptic case, we introduce a notion of Summation Ideals to de-
scribe PDPm instances over higher genus curves, and compare to Nagao’s general approach
to PDPm solving. In even characteristic we obtain reductions of the number of solutions
for both approaches, depending on the curve’s equation. In the best cases, for a hyperellip-
tic curve of genus g, we can divide the number of solutions by 2(n−1)(g+1). For instance,
for a type II genus 2 curve defined over F293 whose divisor class group has cardinality a
near-prime 184 bits integer, the number of solutions is reduced from 4096 to 64. This is
enough to build the matrix of relations in around 7 days with 8000 cores using a dedicated
implementation.

1 Introduction

The Point m-Decomposition Problem (PDPm)

The Discrete Logarithm Problem (DLP) is a well-known and generically difficult problem, and
several standard cryptographic protocols rely on its hardness (for example, Diffie-Hellman key
exchange or digital signature algorithms). We focus on instances in the divisor class group
Jac(H ) of a hyperelliptic1 curve H of genus g defined over “small” field extensions. By small,

1Throughout the article we usually consider elliptic curves as hyperelliptic curves of genus 1. It makes no differ-
ences in our contributions.
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we mean that the extension degree admits a small factor — typically, it is Fqnk with 2 ≤ n ≤ 6.
Computing discrete logarithms in such groups can be done using a variant of the Index-Calculus
algorithm called a decomposition attack. Such algorithms run in two phases. Our main interest
is the first one, called relations collection or harvesting. In the harvesting phase, a linear system
is built by finding linear relations between (the discrete logarithms of) elements of a special
subset, the so-called factor base. In decomposition attacks, relations can be found by solving
multiple instances of the following problem.

Definition 1 (Point m-Decomposition Problem (PDPm)). Given an element R and a subset B of
Jac(H ), find, if they exist, D1, . . . ,Dm in B such that:

R = D1 + · · ·+Dm.

The m-tuple (D1, . . . ,Dm) is called a m-decomposition of R, or a decomposition if the context is
clear.

Nagao proposed in [38] to solve instances of this problem by describing decompositions
using functions in suitable Riemann-Roch spaces. If H has genus g and is defined over some
Fqn , he selected the factor base as B = {P ∈H , x(P) ∈ Fq} and used the linear structure of
Fqn over Fq to describe a decomposition by a multivariate polynomial system. This process is
usually called Weil descent in the litterature, and we will do the same. When the curve is elliptic,
i.e. g = 1, an alternate approach involving Weil descent on summation polynomials [40] can also
be used, as shown by Diem [10] and Gaudry [23]. The systems arising from these methods are
generally zero-dimensional and solved by Gröbner bases methods.

For zero-dimensional ideals, the standard solving strategy using Gröbner bases is to first
compute a basis for a total degree order, then to change for a lexicographical basis using a
change-order algorithm. Total degree order bases are computed with the algorithms F4 [14] or
F5 [15], and for zero-dimensional ideals, the change-order step is done with FGLM’s algorithm
[13] or its Sparse variant [18]. On the one hand, F4 or F5’s complexities are expressed using
the degree of regularity of the ideal [1]. In the context of a decomposition attack, it can be
roughly bounded by the number of solutions of the system2 . On the other hand, the classic
FGLM is usually the computational bottleneck in PDPm solving, even when the Sparse variant
is used (although very important speed-ups are observed). Its complexity depends polynomially
on the dimension of the quotient algebra as a linear space. This dimension equals the number
of solutions of the system over an algebraic closure, and coincides with the degree of the ideal.
Hence we will use both terminologies throughout the presentation, and we use this quantity to
estimate the complexity of solving a PDPm instance. Efficient implementations of Gröbner bases
algorithms exist in Magma [2] and in Maple with the FGb package [12]. These were also our
main tools for experimentations.

In genus 1, summation and Nagao’s approaches give systems with 2n(n−1) solutions, the sum-
mation approach being experimentally faster. When g > 1, Nagao’s approach leads to systems
with dNag = 2n(n−1)g solutions. In both cases, the number of solutions grows too quickly with

2Under a reasonable heuristic assumption of “regular behaviour”, bounding the degree of regularity by n2n−1

gives this estimation up to logarithmic factors in n.
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the extension degree (and the genus) to consider practical computations, and even experiments.
For example, if g = 2 and [K : F65521] = n = 3, a Magma 2.19 [2] implementation of Nagao’s
method needs roughly 1300 sec to solve a degree 4096 system and thus a PDP6 instance. The
probability to find a 6-decomposition is 1/6!, hence 6!× 1300 sec. = 936000 sec. are needed
in average to find a single relation. Therefore to achieve an efficient relation harvesting in a
decomposition attack, the degree of the ideals must be reduced.

Contributions

Throughout this article, efficiency means time efficiency. Our general goal is to design an effi-
cient approach for solving PDPm instances, in order to implement a decomposition attack over
a meaningful genus 2 curve. In other words, the cardinality of its divisor class group is a near-
prime integer whose size is close to the lowest acceptable security level. To do this, we propose
new ways to reduce the degree of the systems arising from the harvesting in even characteristic.
Our contributions can be separated in two categories: those which deal with Nagao’s approach,
and those which focus on the summation approach. We develop both in parallel and show how
to reduce the degree for both methods in even characteristic. Another benefit is that, informally,
the reduction process tends to give a more “homogeneous” shape to the system’s equations. The
more homogeneous a system is, the better its behaviour during a Gröbner basis computation
tends to be [46]. In the last part we finally compare them, adding our new degree reduction
algorithms, to determine which is more efficient when g > 1. Nagao’s approach is seen to be
more efficient in practice, and thus it is used in the last section to estimate the total running time
for the harvesting on a binary genus 2 curve with a class group of around 2184 elements. We now
detail the organization of the article.

Reducing the degree of the ideals for Nagao’s modelling in even characteristic: Our first
focus is Nagao’s approach for solving PDPng instances when g > 1. We introduce the decompo-
sition polynomial, which describes the generic intersection between a function with prescribed
valuation at infinity and the target hyperelliptic curve. Its coefficients depend symbolically on
the coordinates of the function in an suitable basis of a Riemann-Roch space, and are used to
generate the polynomials systems describing PDPng instances.

In characteristic 2 we observe that one of these coefficients is always univariate. This enables
a “presolving” by determining up to n−1 solutions of the system. Additionally we observe that
some other coefficients of the decomposition polynomial are squares. Any square equation can
be replaced by its square root, and each replacement reduces the degree of the final system. We
give an explicit formula for the number of square equations, that depends on the length of h1,
defined as the difference between the degree of the leading and the trailing term. From this we
deduce bounds on the reduced degree of the system after the Weil Descent. More precisely, if
we denote by dopt the reduced degree, we obtain

2(n−1)((n−1)g−1) ≤ dopt ≤ 2(n−1)(ng−1),

compared to the previous dNag = 2n(n−1)g. We also give an exhaustive analysis of the degree
reduction for binary genus 2 curves, where a complete classification is known.
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Defining summation ideals for hyperelliptic curves: Our second focus is the use of sum-
mation polynomials for modelling PDPm instances when g ≥ 2. The idea behind this study is
that using summation polynomials for decomposition attacks over elliptic curves has been more
efficient than Nagao’s approach. The major reason was the possibility to exploit symmetries
to reduce the degree of the system to solve [16][17][22], and another yet less impactful reason
was the smaller number of variables. While the existence of summation polynomials in higher
genus is intuitive, to the best of our knowledge, the only computational approach proposed in
the litterature is [44]. However, several problems inherent to the proposed modelling prevent a
reasonable usage for PDPm solving. The main concerns are the cost of solving a system, and the
harder and seemingly not possible generalization to any hyperelliptic curves of genus g > 1. Our
new approach is closer to the geometric framework proposed in [10]. It is also computational in
nature, and solves the previous concerns at least theoretically. In particular our notion of sum-
mation polynomials can be defined for any algebraic curves, although we focus on hyperelliptic
ones.

For any hyperelliptic curve H given in imaginary model, we follow the geometric presen-
tation of [10] and the ideas of [30] to introduce summation varieties as

Vm,R = {(P1, . . . ,Pm) :
m

∑
i=1

(Pi−P∞) = R,Pi ∈H },

where P∞ is the point at infinity and R ∈ Jac(H ) is a fixed reduced divisor. Let π be the projec-
tion on the x-line (informally). We define the mth summation ideals of H as the ideal associated
to π(Vm,R), and mth summation polynomials as any generating sets for this ideal. We give a
polynomial parametrization of π(Vm,R), thus an algorithmic way to describe and compute sum-
mation polynomials. This description enables us to show that codimπ(Vm,R) = g, so that such
sets must have at least g elements. The standard elliptic summation polynomial from Semaev is
recovered3 as the case g = 1, hence this new notion extends Semaev’s [40]. To the best of our
knowledge, it was not mentioned anywhere in the literature before, neither in the recent survey
[21]. Also, our experiments and the geometric framework lead us to formulate a conjecture that
degπ(Vm,R) = 2m−g. This conjecture allows us to estimate the number of solutions if a PDPm

instance is generated using summation polynomials. We note that it was already proven by
Diem [10] for elliptic curves. We give a new algorithm to solve PDPm instances for hyperelliptic
curves and discuss its efficiency compared to Nagao’s, assuming our degree conjecture is true.

Reducing the degree for the new summation modelling in even characteristic: exploiting
Frobenius: The properties we observe for the coefficients of the decomposition polynomial
translate differently when a summation approach is selected. In even characteristic, the presence
of square coefficients expresses as the action of the Frobenius automorphism. These systems
are a particular case of polynomial parametrizations in perfect fields of characteristic p≥ 2. We
elaborate on the general situation rather than directly on the PDPm setting, as we believe our
results here to be of more general interest. A polynomial parametrization is an ideal generated
by polynomials as Xi−Pi(a1, . . . ,al). If some Pi’s can be written as a pth power of other poly-
nomials, then we can consider the ideal obtained by removing these powers. In characteristic

3It was already observed in [30].
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p, the solutions we find after elimination of a1, . . . ,al should be essentially the same for both
ideals, up to action of the Frobenius automorphism. We show that this is indeed the case. While
it makes no difference geometrically to work with an ideal or the other, removing the pth powers
reduces the degree of the defining equations, which is a crucial parameter in any Gröbner basis
computation. This reduction expresses as a faster running time in the computation of a basis. It
also leads to a reduction of the degree of the systems in a PDPm context in even characteristic.
If I is the system to be solved in this setting, we show that its number of solutions is

degI=Cn
1 ·

dNag

2(n−1)g+L1
,

where the degree ratio C1 (Definition 26) depends only on the polynomial h1 in the curve’s
equation, and L1 is the length of h1.

Comparisons of methods and discrete logarithm computations for genus 2 curves over F293:
The next step is to compare both methods using Magma [2] implementations, see Tables 5 and
6. In odd characteristic our experiments show that Nagao’s approach is more efficient. In even
characteristic, we focus on genus 2 binary curves. The reason to focus on genus 2 curves comes
from recent works on their arithmetic [7][25][26][36][39] showing the interest of the community,
albeit mainly in odd characteristic. For type II curves, that is to say, binary genus 2 curves such
that Jac(H ) has 2-rank one, the summation approach and Nagao’s lead to ideals of the same
degrees after reduction, and the reduced degree is the smallest we could obtain with this work.
Our comparative experiments reveal that Nagao’s is faster overall.

The last section describes our implementation of a decomposition attack on a Type II binary
curve H defined over F23·31 , whose class group Jac(H ) has a nearly prime cardinality of

#J = 2×3×16346619102569543707881667303220993643142373107431938653,

where the biggest factor is 184 bits long. Hence a generic algorithm would need around 292 op-
erations to compute a discrete logarithm in this group. From our previous comparisons, Nagao’s
approach is selected and our degree reduction algorithm is added. Then, we implemented an
optimized and dedicated version of the relation harvesting using efficient Gröbner bases algo-
rithms. More details on the implementation can be found in Section 5.3.

For this curve, n = 3, g = 2, and systems of degree 2(n−1)((n−1)g−1) = 22·(4−1) = 64 must be
solved. Our dedicated implementation reduces the time to solve one PDP6 instance to about 3.2 ·
10−3sec. on H . Overall, approximately 6!× 3.2 · 10−3sec.= 2.3sec. are needed in average to
find a solution. Using 8000 cores, it then takes a bit more than 7 days to build an overdetermined
matrix. We also estimate the number of linear algebra field operations to around 263 (after
efficient filtering steps [3][5]). Security-wise, this suggest that Type II curves are weaker than
expected against decomposition attacks.

Magma code: The Magma code we used to obtain the timings in the experiments is available
at hypersum.gforge.inria.fr.
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2 Nagao’s approach for PDPm solving

We first remind some theoretical background about divisors and the Jacobian variety of hyperel-
liptic curves, seen as its degree 0 divisor class group. We also recall Nagao’s approach to PDPm

solving, highlighting the decomposition polynomial (Definition 6). Its coefficients are used to
generate the multivariate systems related to an instance, and they are the focus of the rest of the
Section. In the rest of the article, we always assume that we are working over a perfect field.

2.1 Riemann-Roch’s coordinates to model PDPng instances

Let H be an imaginary hyperelliptic curve of genus g, defined over a field F by a Weierstrass
equation y2 +h1(x)y = h0(x), where degh1 6 g and h0 is a monic polynomial of degree 2g+1,
and let P∞ be its single point at infinity. The degree 0 divisor class group of the curve is denoted
by Jac(H ). In any class, there exists a unique divisor R = P1 + · · ·+Pk− kP∞, with k ≤ g, such
that no two Pi,Pj are images of each other by the hyperelliptic involution. Such a divisor is called
reduced, so that any class in Jac(H ) can be represented as a reduced divisor. A computational
way to represent reduced divisors is the Mumford Representation.

Definition 2 (Mumford representation). Let R = P1 + · · ·+Pk − kP∞ ∈ Jac(H ) be a reduced
divisor with P = (xi,yi) ∈H . Let u(X) = ∏1≤i≤k(X − xi). There exists a unique v(X) ∈ F[X ]
such that:

• degv < degu = k, and v(xi) = yi for 1≤ i≤ k.

• u | (v2 + vh1−h0).

The pair (u(X),v(X)) is called the Mumford representation of R, and we write R = (u,v) to
denote that (u,v) is the Mumford representation of R. We call the integer k the weight of R.

When we write R ∈ Jac(H ) we mean that we consider a reduced divisor.

Remark 3. A random divisor in Jac(H ) has weight g with very high probability if the base field
is large enough compared to g.

For any divisor D, we denote by L (D) the Riemann-Roch space associated to D. It is
a F-linear space of finite dimension. When a reduced divisor R of weight g is fixed, we are
particularly interested in Riemann-Roch spaces as L (mP∞−R), m ∈ N.

Remark 4. If m < g+1 then no basis of L (mP∞−R) can contain a function involving y, since
it has a pole of order 2g+ 1 at P∞. But if f is a function of x and vanishes at P, then it also
vanishes at −P = (x(P),−y(P)) and thus P+(−P)− 2P∞ is in the support of div f . Any such
divisor reduces to O in the Jacobian, and therefore we need at least m≥ g+1. We will always
assume that this is the case in this section.

If (u,v) is the Mumford representation of R with degu = g, then a natural basis of L (mP∞−
R) is given by

{u,xu, . . . ,xd1u,y− v,x(y− v), . . . ,xd2(y− v)}, (1)
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with d1 = b(m−g)/2c, d2 = b(m−g−1)/2c, and d := d1 +d2 +1 = m−g. If a1, . . . ,ad+1 ∈ F
are the coordinates of f ∈L (mP∞−R) in the above basis, using p(x) = ∑

d1
i=0 a2i+1xi and q(x) =

∑
d2
i=0 a2i+2xi enables to write

f (x,y) = u(x) · p(x)+(y− v(x)) ·q(x). (2)

The function f (x,y) f (x,−y−h1(x)) is then a degree m+g polynomial in x expressed as:

f (x,y) f (x,−y−h1(x)) = (vq−up)2 +q(vq−up)h1−q2h0

= (up)2−upq(2v+h1)+q2(v2 + vh1−h0)

= u(up2− pq(2v+h1)+q2w),

where w is a polynomial such that uw = v2 +h1v−h0, coming from the properties of the Mum-
ford representation. We note that LCX(v2 + h1v− h0) = LCX(−h0) = −1, thus −w is monic.
Considering the degrees of all polynomials involved, the leading coefficient of f (x,y) f (x,−y−
h1(x)) is LC((up)2) = a2d1+1 = ad+1 if m− g is even and LC(−q2h0) = −a2d2+2 = −ad+1 if
m−g is odd. In the rest of this article, functions are always normalized at infinity, that is to say
we set ad+1 = 1. This implies that (−1)m−g f (x,y) f (x,−y−h1(x)) is monic.

In term of the quadratic field extension F(H ) | F(x), the polynomial f (x,y) f (x,−y−h1(x))
is known as the norm of the function f , and can also be computed as a resultant with respect to
y, since the function is a polynomial. We keep a close terminology in the next definition.

Definition 5. Let R = (u,v) ∈ Jac(H ) of weight g, and let d = dimL (mP∞−R)−1.

• A polynomial f (X ,Y )∈ (F[a1, . . . ,ad ])[X ,Y ] as in Equation (2) is called a generic function
in L (mP∞−R).

• The generic norm of a generic function is N( f ) = (−1)m−gResY ( f (X ,Y ),Y 2 +h1(X)Y −
h0(X)). It is a monic polynomial in (F[a1, . . . ,ad ])[X ], and it can be written explicitely as

N( f ) = (−1)m−gu(up2− pq(2v+h1)+q2w).

We now fix a reduced divisor R = (u,v) ∈ Jac(H ) of weight g. Recall that an equivalence
of divisors R = P1+ · · ·+Pm−mP∞ is called a m-decomposition of R in this article, or decompo-
sition if the context is clear. Considering a decomposition means there is f ∈L (mP∞−R) such
that div f +R = ∑

m
i=1(Pi−P∞). Hence for a generic function f ∈L (mP∞−R),

N( f )
u(X)

= F(X) = Xm +
m−1

∑
i=0

Nm−i(a1, . . . ,ad)X i, (3)

is also a monic polynomial in (F[a1, . . . ,ad ])[X ], with degNi = 2 for all i. As F vanishes exactly
at the abscissae of the Pi’s, it describes a decomposition of R. This polynomial is the core to our
contributions so we give it its own definition.

Definition 6. Let R = (u,v) ∈ Jac(H ) of weight g, and let f be a generic function in L (mP∞−
R). The polynomial F(X) = N( f )

u(X) ∈ (F[a1, . . . ,ad ])[X ] is called the decomposition polynomial.

If the context is not clear, we may call it the R-decomposition polynomial to highlight that it
describes a decomposition of R.
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Nagao’s approach to find decompositions: In a decomposition attack, the field is Fqn and the
genus g is fixed. The standard factor basis is B = {P−P∞ : x(P) ∈ Fq} and we solve PDPng

instances: given R ∈ Jac(H ), we try to find a decomposition as R = P1 + · · ·+Png−ngP∞. This
is equivalent to the existence of f ∈L (ngP∞−R) such that

div f +R = P1 + · · ·+Png−ngP∞, (4)

where all the Pi’s are in B. We thus set m = ng and d = (n−1)g, and the goal is to determine
such a function f , that is to say, its coefficients a1, . . . ,ad as in Equation (2). To do this we
compute the decomposition polynomial as in Equation (3). Let xi be the abscissa of Pi. To have
all xi ∈ Fq, it is necessary that F ∈ Fq[x], or equivalently, that we find a∗1, . . . ,a

∗
d ∈ Fqn such that

Ni(a∗1, . . . ,a
∗
d) ∈ Fq for all 1≤ i≤ ng.

This can be achieved with a so-called Weil descent. Let 1, t, . . . , tn−1 be a basis of Fqn over Fq,
and write ai =∑

n−1
j=0 ai, jt j with ai, j ∈Fq. Using the notation a=(a1,0, . . . ,a1,n−1, . . . ,ad,0, . . . ,ad,n−1),

we have

Ni(a1, . . . ,ad) =
n−1

∑
j=0

Ni, j(a)t j, (5)

with Ni, j ∈ Fq[a], so that all Ni belong to Fq exactly at the solutions of the system

N = {Ni, j(a) = 0, 1 6 i 6 ng, 1 6 j 6 n−1}. (6)

Assume s is such a solution. Then, in addition, we have to check that the specialized poly-
nomial F∗(X) = Xng +∑

ng−1
i=0 Nng−i(s)X i is split over Fq. When it is the case, its roots are the

abscissae of the Pi’s, giving a decomposition of R. If Sn denotes the symmetric group of n
elements, the probability of finding such a decomposition is heuristically given by

#
(
Bng
�Sng

)
#Jac(H )n ≈ qng

(ng)!
1

qng =
1

(ng)!
.

Solving systems in Nagao’s approach Having n(n− 1)g quadratic equations in n(n− 1)g
variables, systems like N are generally zero-dimensional, and we solve them using Gröbner
bases methods. In the introduction, we mentioned that the complexity of the strategy using
Gröbner bases can be estimated by the number of solutions.

With Nagao’s approach to decomposition attacks, systems as N usually have dNag = 2n(n−1)g

solutions. This grows exponentially fast with the genus and the extension degree, and moreover,
the probability of finding a solution drops exponentially fast as well. Even experimentally, com-
putations generally take too long when n(n− 1)g > 12 to find relations. This is a first reason
why we strive to reduce the degree dNag as much as possible.

2.2 Properties of the decomposition polynomials’ coefficients

We give a general expression for the decomposition polynomial. In even characteristic, it is
used to show that the coefficient of highest degree is a univariate polynomial, and that some
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other are squares. The number of squares is directly related to the degree reduction, as any
squared equation can be replaced by a linear equation in even characteristic.

Let H : y2 +h1(x)y = h0(x) a hyperelliptic curve of genus g defined over a field F of arbi-
trary characteristic for now, but soon we will impose that it is even. Throughout this section, we
fix R ∈ Jac(H ) of weight g. We use the previous notation and we write a generic function f ,
normalized at infinity, as

f (X ,Y ) = u(X)p(X)+(Y − v(X))q(X),

so that the associated decomposition polynomial can be written as

F(X) = (−1)m−g(up2− pq(2v+h1)+q2w) = Xm +
m−1

∑
i=0

Nm−i(a1, . . . ,ad)X i. (7)

The coefficient N1 is univariate We now assume that Char(F) = 2 for the rest of the section.
The next proposition generalizes an observation in [30] to every genus.

Proposition 7. Let h1(X) = ∑
g
i=0 HiX i with Hi = 0 for i > degh1, and write h0(X) = X2g+1 +

h2gX2g + · · · . Let R = (u,v) ∈H of weight g, and write u(X) = Xg +u1Xg−1 + · · · ∈ F[X ]. Let
F be the R-decomposition polynomial. Then its coefficient N1(a1, . . . ,ad) is always a univariate
polynomial. More precisely, we have:

N1(a1, . . . ,ad) = N1(ad) =

{
a2

d +Hgad +u1, if d is even
a2

d +Hgad +u1 +h2g, if d is odd
.

Proof. First we notice that degX pqh1 ≤ m−1 and if Hg 6= 0, then LCX(pqh1) = Hgad . Before
normalization, we can write

up2 =(Xg +u1Xg−1 + · · ·)(a2
2d1+1X2d1 +a2

2d1
X2d1−2 + · · ·)

=a2
2d1+1X2d1+g +u1a2

2d1+1X2d1+g−1 + · · ·

and

q2w =(a2
2d2+2X2d2 +a2

2d2
X2d2−2 + · · ·)(Xg+1 +wgXg + · · ·)

=a2
2d2+2X2d2+g+1 +wga2

2d2+2X2d2+g + · · · .

If d is even, then p is monic as a polynomial in X , and so is up2 in expression (7), and
we have degX up2 = m, degx q2w = m− 1. The leading coefficient in X of up2−Xm is u1. We
conclude as LCX(q2w) = a2

d .
If d is odd, then q is monic as a polynomial in X , and we have degX up2 =m−1, degX q2w=

m. In this case LCX(q2w−Xm) = wg. Since we have uw = v2 + h1v+ h0, and that v2 and vh1
have degree less than 2g, then wg = u1 +h2g. We conclude as LCX(up2) = a2

d .
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Now let F= F2kn with F2k -basis 1, t, . . . , tn−1 and write ad = ∑
n−1
i=0 ad,it i and u1 = ∑

n−1
i=0 u1,it i.

For simplicity, we assume temporarily that d is even. If Hg ∈ F2k , which is generally the case as
h1 is monic in practice, then Proposition 7 gives:

N1(ad) = a2
d +Hgad +u1

=

(
n−1

∑
i=0

ad,it i

)2

+Hg

n−1

∑
i=0

ad,it i +
n−1

∑
i=0

u1,it i

= a2
d,0 +Hgad,0 +u1,0 +

n−1

∑
i=1

a2
d,it

2i +Hg

n−1

∑
i=1

ad,it i +
n−1

∑
i=1

u1,it i

= N1,0(ad,0, . . . ,ad,n−1)+
n−1

∑
i=1

N1,i(ad,1, . . . ,ad,n−1)t i,

where N1,0 may involve ad,1, . . . ,ad,n−1 depending on the defining polynomial for F2kn . This
shows that the last n−1 coefficients in t of N1(ad) form a system with n−1 equations of degree
2

S1 = {N1,i(ad,1, . . . ,ad,n−1) = 0 : 1≤ i≤ n−1}.
It is generally 0-dimensional, with 2n−1 solutions. As n ≤ 4 in practice, solving it is instanta-
neous and leads to values for the variables ad,i. What is more interesting is that S1 has a solution
in almost every situation.

Proposition 8. Let F = F2kn and use the same notation as in Proposition 7. If Hg = 0 or
TrF2kn |F2k (H

−2
g ) 6= 0, then there exists x ∈ F2kn such that N1(x) ∈ F2k .

Proof. First, we assume that d is even. If Hg = 0, then we have N1(ad) = a2
d + u1 = (ad +√

u1)
2 because of the characteristic and N1(x+

√
u1) ∈ F2k for any x ∈ F2k . Now if Hg 6= 0 with

TrF2kn |F2k (H
−2
g ) 6= 0, there is x ∈ F2kn such that N1(x) ∈ F2k if and only if there exist z ∈ F2k

such that N1(x) + z = 0. In other words we look for possible roots of N1(ad) + z for some
z ∈ F2k . We use the change of variable a← ad/Hg on the polynomial N1(ad) + z to obtain
N1(a) = a2 +a+H−2

g (u1 + z). From [35, prop 3.79 p.127], polynomials such as N1(a) are split
if and only if TrF2kn |F2 (H

−2
g (u1 + z)) = 0. “Chain rule” for traces gives

TrF2kn |F2 (H
−2
g (u1 + z)) = TrF2k |F2 (TrF2kn |F2k (H

−2
g (u1 + z)).

Therefore TrF2kn |F2k (H
−2
g (u1 + z)) needs to be a root of the polynomial TrF2k |F2 , which is split

[37] over F2k . Let α ∈F2k be such a root, so that we want z such that α =TrF2kn |F2k (H
−2
g (u1+z)).

By linearity of the trace, we have

α +TrF2kn |F2k (H
−2
g u1) = TrF2kn |F2k (H

−2
g z)

= zTrF2kn |F2k (H
−2
g ).

With the hypothesis it is possible to write

z =
α +TrF2kn |F2k (H

−2
g u1)

TrF2kn |F2k (H
−2
g )

∈ F2k .

The proof for d odd is obtained by replacing any u1 in the above by u1 +h2g.

10



Since TrF2kn |F2k is a polynomial over F2k of degree 2k(n−1), the probability that H−2
g ∈ F2kn is

one of its root is 1/2k which is negligible in practice and is decided once and for all when the
curve is chosen.

Corollary 9. If Hg = 0 or TrF2kn |F2k (H
−2
g ) 6= 0, the system S1 has a solution over F2k .

Proof. From Proposition 8, we always find a value a∗d ∈ F2kn such that N1(a∗d) ∈ F2k in this
situation. The conclusion follows since N1(a∗d) ∈ F2k if and only if there exists a solution
(a∗d,1, . . . ,a

∗
d,n−1) of S1.

Square Coefficients In characteristic 2, Expression (7) simplifies to:

F(X) = p(X)2u(X)+ p(X)q(X)h1(X)+q(X)2w(X) = Xm +
m−1

∑
i=0

Nm−i(a1, . . . ,ad)X i. (8)

Let M = {aia j : 1≤ i 6= j≤ d}∪{a1, . . . ,ad} and M = {a2
i : 1≤ i≤ d}. Then any monomial of

M appearing in a Ni ∈ F[a1, . . . ,ad ] in Expression (8) has to come from a coefficient in X of the
polynomial pqh1. If no such monomials appears in Ni, then it is a square since the characteristic
of the field is even. Hence, the number of such square coefficients depends only on h1, or more
precisely on its length.

Definition 10 (Length of a polynomial). Let P be a univariate polynomial. Let dP and ip be
respectively the degree of the leading and trailing term of P. The length of P is defined as
dP− iP.

Proposition 11. Let F be a field of even characteristic and H : y2 +h1(x)y = h0(x) a hyperel-
liptic curve of genus g defined over F. Let R ∈ Jac(H ) of weight g, and L1 be the length of h1.
There are g+ 1−L1 squares among the coefficients in X of the R-decomposition polynomial,
one of them being its leading coefficient since it is monic.

Proof. Let pq = ∑
d−1
i=0 MiX i with Mi ∈ F[a1, . . . ,ad ],degMi = 2 and dega j

Mi = 1 for 0≤ j ≤ d,

and h1 = ∑
dh
i=ih HiX i. Then the Cauchy product rule gives

pqh1 =
d−1+dh

∑
i=ih

(
i

∑
j=0

M jHi− j

)
X i =

d−1+dh

∑
i=ih

CiX i, (9)

with the convention that Md = . . .=Md−1+dh =Hdh+1 = . . .=Hd−1+dh = 0, and Ci ∈F[a1, . . . ,ad ].
We have SuppCi ⊂M for all ih ≤ i ≤ d − 1 + dh. Recall that m− g− 1 ≤ 2d1 ≤ m− g,
m−g−2≤ 2d2 ≤ m−g−1 and that degw = g+1. We let

up2 = u ·
d1

∑
i=0

a2
2i+1X2i =

2d1+g

∑
i=0

DiX i,

q2w = w ·
d2

∑
i=0

a2
2i+2X2i =

2d2+g+1

∑
i=0

EiX i,

11



with SuppDi ⊂M and SuppEi ⊂M for all i, and degDi = degEi = 2. We can write the
decomposition polynomial F as

F(X) =
ih−1

∑
i=0

(Di +Ei)X i +
d−1+dh

∑
i=ih

(Ci +Di +Ei)X i +
m−1

∑
i=d+dh

(Di +Ei)X i +Xm. (10)

Then Supp(Di +Ei)⊂M and M ∩Supp(Ci +Di +Ei) 6= /0 whenever Ci is not zero. From their
definition, we see that Ci = 0 can only happen if Hi = 0 for all i, which is excluded by the fact
that H is a binary hyperelliptic curve. Now the number of squares among the coefficients of F
is read on Expression (10) as m− (d +dh)+1+ ih = g+1−L1.

Additional squares depending on LC(h1) Note that N1 is a square if and only if degh1 =
dh < g. If it is the case, then the leading term in X of pqh1 is LTX(pqh1) = Hdhad , and it appears
in the coefficient N1+g−dh as the only one involving a monomial from M . When Hdh ∈ F2k we
write

Hdhad = Hdh

(
ad,0 +

n−1

∑
i=0

ad,it i

)
,

and observe that in N1+g−dh(a1, . . . ,ad) = ∑
n−1
j=0 N1+g−dh, j(a)t j the monomial ad,0 appears only

in the coefficient of degree 0 in t. If a solution a∗ = (a∗d,1, . . . ,a
∗
d,n−1) of S1 is found, as the Weil

Descent here deals only with the n−1 last coefficients, we find n−1 new square equations with
each N1+g−dh, j, for 1≤ j ≤ n−1.

2.3 Reducing the degree of PDPng systems

Let F= F2kn , and consider a basis 1, t, . . . , tn−1 for F2kn over F2k . If H : y2 +h1(x)y = h0(x) is a
hyperelliptic curve of genus g defined over F2kn , we fix LC(h1) to 1, as it is generally the case in
practice, but we do not fix its degree dh ≤ g. Consider a PDPng instance for R ∈ Jac(H ), with
factor basis B = {P−P∞ : P ∈H ,x(P) ∈ F2k}, and let F be the decomposition polynomial as
in Equation (8). Following Proposition 7 we obtain by Weil descent a first system over F2k

S1 = {N1,i(ad,1, . . . ,ad,n−1) = 0 : 1≤ i≤ n−1},

and we let a∗ = (a∗d,1, . . . ,a
∗
d,n−1) be a solution of S1, see Proposition 8. We evaluate the re-

maining equations at a = (a1,0, . . . ,a1,n−1, . . . ,ad−1,n−1,ad,0) to form the system

S2 = {Ni, j(a,a∗) : 2≤ i≤ ng,1≤ j ≤ n−1},

with (ng−1)(n−1) variables and equations. Generally, this quadratic system is 0-dimensional
and therefore generates an ideal of degree 2(ng−1)(n−1).

When we start the Weil descent over F2kn , the characteristic enables to replace square equa-
tions by linear ones: indeed, if Ni is a square, then it can be written as Ni(a1 . . . ,ad)=∑

n−1
j=0 Ñi, j(a)2t j,

with deg Ñi, j = 1. For all i, j, we have Ni, j(a) = 0⇔ Ñi, j(a) = 0⇔ Ñi, j(a,a∗) = 0, so that we
can build a new system from S2 by replacing any Ni, j(a,a∗) ∈S2 that is a square by a linear
equation Ñi, j(a,a∗). We call this new system unsquared and denote it by

√
S2 from now on.
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Proposition 12. Let H : y2 + h1(x)y = h0(x) be a hyperelliptic curve of genus g defined over
F2kn , with h1 monic. Let L1 be the length of h1 and R ∈ Jac(H ) of weight g. The unsquared
system

√
S2 related to R contains (n−1)(g−L1) linear equations.

Proof. Write L1 = dh− ih, where dh, resp. ih, is the degree of the leading, resp. trailing, term of
h1. There are two possible cases:

• If dh = g, Proposition 11 tells us that all squares in S2 come from the ithh coefficients of
lower degree in F , so that

√
S2 contains (n−1)ih linear equations.

• If dh < g, N1 counts as a square in Proposition 11 but we do not use it to build
√

S2 since
it was used for S1, so that g− L1− 1 square coefficients are used. Since h1 is monic,
the Weil Descent gives us n− 1 additional square equations in S2. Overall, this leads to
(n−1)(g−L1) linear equations in

√
S2.

In any case, there are (n−1)(g−L1) linear equations in
√

S2.

It never occured in our experiments that a linear equation was a combination of the others.
As systems like S2 are generally of dimension 0 the following assumption is reasonable:

Genericity assumption 13. The linear equations created during the “unsquaring” process are
independent and the ideal generated by

√
S2 has dimension 0.

Under this assumption, the degree of S2 is generally divided by 2 with every linear equation
replacing a quadratic one, and any linear equation can be used to eliminate a variable. A new
system S3 is built that way, containing the remaining quadratic equations. If L1 is the length of
h1, there are (n− 1)((n− 1)g+L1− 1) variables and as many quadratic equations left in S3.
Hence it is generally of dimension 0 and has degree:

degS3 = 2(n−1)((n−1)g+L1−1).

As 0≤ ih ≤ dh ≤ g, we see that the best case happens when L1 = 0 and LC(h1) ∈ F2k , i.e. when
h1 has only one term with coefficients in the subfield of interest, in which case we find the lower
bound

dopt = 2(n−1)((n−1)g−1) ≤ degS3.

We conclude by remarking that since h1 encodes the 2-rank of Jac(H ), then there should be
a link between this reduction and the action of 2-torsion elements over the set of decompositions
of a given R, analogous to the one exploited in [17].

2.4 Analysis of the degree reduction for genus 2 binary curves

We conclude this Section with an exhaustive analysis of genus 2 binary curves, summed up
in Table 1. Such curves are classified in three types depending on the rank of the two-torsion
subgroup in Jac(H ) — see Section 2.4 for details. Among such curves, Type II curves were
particularly highlighted in [4] because of their lower cost arithmetic. Our study reveals that they
are as weak as Supersingular curves (type III) if only decomposition attacks are considered.
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Classification of genus 2 binary curves: Let H : y2 + h1(x)y = h0(x) be a genus 2 curve
defined over a field F2n , so that degh1 = dh ≤ 2 and degh0 = 5. We write h1(x) = H2x2 +H1x+
H0 and h0(x) = x5 +∑

4
i=0 fixi. Let t ∈ F2n an element of absolute trace 1, and ε ∈ F2, and see

[4][42] for details on their definition. There are three types of binary genus 2 curves, depending
on h1.

1. Type I curves: A curve is a type I curve if and only if dh = 2. It then falls into one of two
subtypes whether h1 has roots in the ground field or not. We emphasize that if n is odd
then we can set t = 1.

• If h1 is irreducible over F2n , then H is type Ia and is isomorphic to the curve

HIa : y2 +(x2 +H1x+ tH2
1 )y = x5 + tεx4 + f1x+ f0.

• Else h1 has its roots in F2n , H is type Ib and isomorphic to the curve defined by

HIb : y2 + x(x+H1)y = x5 + tεx4 + f1x+ f0.

2. Type II curves: If dh = 1, there are two subtypes depending on the parity of the extension
degree n.

• If n is odd then H is isomorphic to

HII : y2 + xy = x5 + f3x3 + εx2 + f0.

• If n is even then H is isomorphic to

HII : y2 +H1xy = x5 + ε
′x3 + tεH2

1 x2 + f0,

with ε ′ ∈ F2.

3. Type III curves: Lastly if dh = 0 then H is isormorphic to the curve defined by

HIII : y2 + y = x5 + f3x3 + f1x+ tε.

There are subtypes for type III as well but as such curves are known to be supersingular,
and therefore weak to the Frey-Rück attack [19], so we do not go into further details. There are
also other forms for h0 for each type, coming at the expense of more coefficients in h1. We focus
on the above forms for genus 2 binary curves, and we call them canonical forms in the rest of
the article.
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Comparisons of degree reductions depending on canonical forms: Table 1 shows the min-
imal degrees dred obtained with the process of Section 2.3 applied to each canonical form of
curves defined over a field F2kn with 2≤ n≤ 4. They correspond to the degree of the system S3
in said section. The dNag column shows the degree expected with a standard Nagao modelling.
Column Univariate gives the number of variables that can be determined by using equation N1,
and columns Square and LC(h1) show the number of linear equations to be expected after build-
ing the system S2. If n is even, then TrF2kn |F2k (1) = 0, so Proposition 8 cannot be applied and
the system S1 may not have a solution. This is indicated by a “≤” sign in the corresponding
cell. Nonetheless we only indicate the minimal degree for each type of curve.

Table 1: Degree reduction in genus 2 for small extension fields
Type degh1 L1 n Univariate Square LC(h1) dred dNag

Ia 2 2
2 ≤ 1 - - 8 16
3 2 - - 1024 4096
4 ≤ 3 - - 221 224

Ib 2 1
2 ≤ 1 1 - 4 16
3 2 2 - 256 4096
4 ≤ 3 3 - 218 224

Ib with h1(x) = x2 2 0
2 ≤ 1 2 - 2 = dopt 16
3 2 4 - 64 = dopt 4096
4 ≤ 3 6 - 215 = dopt 224

II 1 0
2 1 1 ≤ 1 2 = dopt 16
3 2 2 ≤ 2 64 = dopt 4096
4 3 3 ≤ 3 215 = dopt 224

III 0 0
2 1 1 1 2 = dopt 16
3 2 2 2 64 = dopt 4096
4 3 3 3 215 = dopt 224

For type Ia the reduction comes only by using the univariate equations to find values for some
variables. The type Ib has a particular subcase when h1(x) = x2, i.e. when H1 = 0, where dopt can
be reached. The polynomial h1 for type II depends on the extension degree and LC(h1)’s base
field. As we mentioned already, if H1 ∈ F2k then additional squares can be found in the system.
For type III, h1 is always monic so we can exploit all steps of reduction. This reinforces the
weakness of those curves.

Finally notice that if kn is odd and as LC(h1) = 1 in practice, then the degree reduction for
type II curves reaches dopt = 2(n−1)((n−1)g−1). This reveals a weakness for this type, enabling
us to design a practical Discrete Logarithm computation for realistic parameters on such curves,
see Section 5.3.

It is also worth mentioning that if g= 2,n= 4 and while the computation time is not practical
(more than 250 hours with Magma 2.19), it is now possible to solve a given PDP8 instance on
a Type II curve by solving ideals of degree 215 instead of 224, a number of solutions previously
too high to even consider a try.
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The case h1(x) = x2: In our situation, the length of h1 is the principal indicator of the reduction
factor we can obtain. In particular, curves of type Ib with h1(x) = x2 are such that L1 = 0 and
therefore we can expect the best reduction factor. If h1(x) = x2, then f1 6= 0 or else it can be
verified that the curve has a simple singularity at (0,

√
f0), and so has genus 1. It can be checked

that genus 2 curves with h1(x)= x2 are isomorphic to type II curves using the change of variables
x = 1/x′ and y = y′/x′3 +

√
f0. However, as seen in Table 1, small differences appear depending

on the chosen model. This is why we choose to distinguish the two cases.

3 Summation sets and PDPm solving

This section introduces an alternate modelling of PDPng instances in all genus, derived from
Gaudry and Diem’s usage of elliptic summation polynomials introduced in [40]. We generalize
this notion to hyperelliptic curves and mention that the presentation could be extended to any
curves. As our description enables algorithmic computations of these new objects, we give
thereafter simple examples and timings for experiments. The expected number of solutions of
PDPm instances using summation ideals is stated and a new algorithm to solve them is given.
The section ends with a discussion on computational aspects of summation polynomials.

3.1 Geometric description of PDPm setting

To simplify the presentation we assume that the base field F is algebraically closed, but the
whole presentation extends to any field. During this section we fix a hyperelliptic curve H :
y2 + h1(x)y = h0(x) in imaginary model defined over F and of genus g, and a reduced divisor
R = (u,v) ∈ Jac(H ). Following Remark 4, we consider an integer m≥ g+1. It is clear that the
order of the points in a decomposition as R = P1 + . . .+Pm−mP∞ does not matter. This means
that the mth-symmetric group Sm acts on the set of all such decompositions. This prompts the
next definition.

Definition 14. The algebraic variety Vm,R = {(P1, . . . ,Pm) : ∑
m
i=1 Pi−mP∞ = R}/Sm is called

the m-summation variety associated with R, or the m-summation variety if the context is clear.

The following description will allow us to compute “symmetrized” polynomials that gen-
erate this variety, that is to say, polynomials whose variables are symmetric expressions of the
standard variables. Let π : H m−→ (P1)m be the map induced by the double cover x : H −→P1.
Our first goal is to describe Vm,R in general and its projection “on the x-line” π(Vm,R). We give
a description for R of weight g as it is the usual case, but it can be extended to any R straight-
forwardly. From Section 2, a generic function normalized at infinity in L (mP∞−R) is written
as f (X ,Y ) = p(X)u(X)+(Y − v(X))q(X), with p(X) = ∑

d1
i=0 a2i+1X i and q(X) = ∑

d2
i=0 a2i+2X i.

We have d1 +d2 = m−g−1 = d−1 and we let a = (a1, . . . ,ad). From Section 2.2, the decom-
position polynomial is the monic polynomial in (F[a])[X ] given by

F(X) =
N( f )
u(X)

= (−1)m−g(up2− pq(2v+h1)+q2w) = Xm +
m−1

∑
i=0

Nm−i(a)X i, (11)
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with degNi = 2 for 1≤ i≤ m. Assume now that f describes a decomposition of R as P1 + · · ·+
Pm−mP∞ = R and let x = (x(P1), . . . ,x(Pm)). We know that F vanishes exactly at all the x(Pi)’s
so we can write

F(X) =
m

∏
i=1

(X− x(Pi)) = Xm +
m−1

∑
i=0

(−1)m−iEm−i(x)X i, (12)

where Ei denotes the ith elementary symmetric polynomial in m variables. Let e = (e1, . . . ,em)
be variables standing for these symmetric expressions. Equating coefficients of (11) and (12) we
obtain a polynomial ideal Im,R generated by

e1 = N1(a),
...

em = (−1)mNm(a),

(13)

of m equations in 2m−g variables. We claim that Vm,R is (isomorphic to) the variety associated
to Im,R.

Proposition 15. Let H be a hyperelliptic curve in imaginary model of genus g, and let R ∈
Jac(H ). For any m ≥ g+ 1, define Im,R as the ideal in F[a,e] generated by system (13). The
summation variety Vm,R is isomorphic to V (Im,R). It is an irreducible variety and its associated
ideal is Im,R.

Proof. If ((x1,y1), . . . ,(xm,ym))∈ Vm,R, then there is a f ∈L (mP∞−R), unique if normalized at
infinity, such that div f +R = ∑

m
i=1 Pi−mP∞, hence Vm,R ⊂ V (Im,R). For the reverse inclusion,

let (a1, . . . ,ad ,e1, . . . ,em) be in V (Im,R). As F is algebraically closed, we find x1, . . . ,xm such
that ∏

m
i=1(X−xi) = Xm+∑

m−1
i=0 (−1)m−iem−iX i. We show that there exist y1, . . . ,ym ∈ F such that

Pi = (xi,yi)∈H and ∑
m
i=1 Pi−mP∞ = R. First we specialize a generic function f with a1, . . . ,ad .

This gives an element f ∈L (mP∞−R) such that F∗(X) := ∏
m
i=1(X−xi) = ResY ( f (X ,Y ),Y 2 +

h1(X)Y − h0(X)). Thus we have F∗(xi) = 0 for any xi, so by properties of the resultant, we
know that f (xi,Y ) and Y 2 + h1(xi)Y − h0(xi) share a common root yi. In particular, the points
Pi = (xi,yi) describes the wanted divisor.

The ideal Im,R is an example of a polynomial parametrization. In [8, Prop. 3, p. 347], it is
characterized as Im,R = {g ∈ F[a,e] : g(a,N1(a), . . . ,(−1)mNm(a)) = 0 in F[a]}. We reproduce
the main arguments of the proof here. The difficult part is to show that the right-hand side
is included in Im,R, whereas the reverse inclusion follows from the definition of Im,R. First
consider a monomial m(a,e) = aα1

1 . . .aαd
d eβ1

1 . . .eβm
m . Writing ei = (−1)iNi(a)− ((−1)iNi(a)−

ei), we can find polynomials Bi(a,e)’s such that eβi
i =

(
(−1)iNi(a)

)βi +Bi · ((−1)iNi(a)− ei).
This means there are polynomials C1, . . . ,Cm such that

m(a,e) =m(a,N1(a), . . . ,(−1)mNm(a))+ ∑
i≤m

Ci · ((−1)iNi(a)− ei).

As any polynomial is a linear combination of monomials, this writing extends to polynomials.
If now m is a polynomial such that m(a,N1(a), . . . ,(−1)mNm(a)) = 0, the above writing shows
that it is in Im,R.
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We now claim that Im,R is a prime ideal. Let gh be in Im,R. Using the characterization of
Im,R, we see that g(a,N1(a), . . . ,(−1)mNm(a)) ·h(a,N1(a), . . . ,(−1)mNm(a)) = 0 in the integral
domain F[a]. Hence one of the factors must be zero, in other words, either g or h must be in
Im,R, which is what we claimed. Equivalently, Vm,R is irreducible.

We now define summation sets:

Definition 16 (summation polynomials for hyperelliptic curves). Let H be a hyperelliptic curve
of genus g given by a Weierstrass equation y2 + h1(x)y = h0(x), m ≥ g+ 1 and R ∈ Jac(H )
of weight g. The mth summation ideal associated to H and R is defined as the elimination
ideal Im,R ∩F[e] where Im,R is the ideal in F[a,e] generated by equations (13). Any (finite)
set Sm,R ⊂ F[e] generating Im,R ∩F[e] is called a set of mth summation polynomials, or a mth

summation set, associated with R.

The ideal Im,R∩F[e] essentially describes π(Vm,R). To “compute” this projection, we usu-
ally compute a Gröbner basis of Im,R for an adequate elimination order (we refer to [8] for a de-
scription of the corresponding notions). For any set S of polynomials we denote by S(x1, . . . ,xm)
the set of all elements in S evaluated at (x1, . . . ,xm). The next proposition generalizes a result
known for elliptic curves:

Proposition 17. For any m≥ g+1, the variety V (Im,R∩F[e]) is irreducible, and its associated
ideal is the summation ideal. A set Sm,R of mth summation polynomials associated to R exists,
and it verifies:

Sm,R(e1, . . . ,em) = 0⇔ ∃ Pi = (xi,yi) ∈H ,1 6 i 6 m, such that ei = Ei(x1, . . . ,xm)

and P1 + · · ·+Pm−mP∞ = R.

Proof. Using the above characterization of polynomial parametrizations, we obtain that Im,R∩
F[e] = {g ∈ F[e] : g(N1(a), . . . ,(−1)mNm(a)) = 0 in F[a]} (this is also stated in [8, Prop. 3, p.
347]). The argument for primality is essentially the same as in Proposition 15. This proves the
first statement. The existence of summation sets comes from Hilbert’s basis theorem. Now if e
is in V (Im,R∩F[e]), according to the extension theorem [8, p. 118] we can find a = (a∗1, . . . ,a

∗
d)

such that (a,e) ∈V (Im,R). The conclusion comes from Proposition 15.

Remark 18. Geometrically, a summation set Sm,R satisfies V (Sm,R) =V (Im,R∩F[e]).

We briefly discuss the cardinality of summation sets, assuming for simplicity that we are in
a generic situation. Being described by m equations in a 2m− g dimensional space, Vm,R has
dimension m−g, so π(Vm,R) has codimension g in an ambient space of dimension m. This means
that a minimal generating family for a summation ideal should have at least g elements. These
varieties seem far from being complete intersections, as our experiments in the next section
suggest.

When g = 1, the summation ideal is principal, which “shows” that the mth summation poly-
nomial is unique (up to a constant) in the elliptic case. Proposition 17 gives another proof of the
irreducibility of elliptic summation polynomials.
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While this presentation focuses on the hyperelliptic case, it can be adapted to non-hyperelliptic
curves as well by using bases of L (mO−R), where O is a distinguished point of the curve. We
ran some experiments for superelliptic curves and Ca,b curves of small genus but we did not
investigate further, as such curves are not considered in practice.

3.2 Examples of summation sets and experiments

Using the Magma code from the URL we provided, one can compute summation polynomials
for elliptic curves and confirm that, following the process described in the previous section, the
elliptic summation polynomials from [40] are obtained. Here we give summation sets in genus 2,
for the smallest possible sum (of length 3). We then report experimental timings for computation
of summation sets.

3.2.1 First summation polynomials in genus 2

Odd characteristic: We assume for simplicity that F has characteristic 6= 5. Then an imag-
inary hyperelliptic curve admits a Weierstrass equation H : y2 = x5 + h3x3 + h2x2 + h1x+ h0,
with hi ∈ F. Using Section 3.1, the smallest decomposition is obtained for m = g+1 = 3. For a
fixed R = (u,v) of weight 2 in Jac(H ), a convenient F-basis of L (3P∞−R) is {u,y− v}, and
we have d1 = d2 = 0, d = m− g = 1. With the previous notations, this means p(X) = a1 and
q(X) = 1. Let u = X2 +u1X +u0 and v = v1X + v0, and compute

w =−X3 +u1X2 +(u0−h3−u2
1)X +(u3

1 +h3u1−2u1u0 + v2
1−h2).

Hence the decomposition polynomial can be written

F(X) = (−1)d(up2−2pqv+q2w)

= X3− (a2
1 +u1)X2 +(2a1v1 +u2

1 +h3−u0−a2
1u1)X +2a1v0 +2u1u0 +h2−a2

1u0−u3
1−h3u1− v2

1

= X3− e1X2 + e2X− e3.

Equating coefficients gives the following system:
e1 = a2

1 +u1,

e2 = 2a1v1 +u2
1 +h3−u0−a2

1u1,

e3 = u3
1 +h3u1 + v2

1−2a1v0−2u1u0−h2 +a2
1u0.

Treating the parameters ui,vi,hi as non-zero numbers, that is to say, computing a Gröbner basis
over a suitable function field, we obtain the following “symbolic” summation polynomials after
elimination of a1, assuming e3 > e2 > e1 and that the order for this block of variables is the
graded reverse lexicographical (grevlex or DRL) order:

S5,1 = e2
2 +2u1e2e1 +u2

1e2
1 +(−2h3−4u2

1 +2u0)e2 +(−2h3u1−4u3
1 +2u1u0−4v2

1)e1 +h2
3 +4h3u2

1−2h3u0

+4u4
1−4u2

1u0−4u1v2
1 +u2

0,

S5,2 = v1e3 + v0e2 +(u1v0−u0v1)e1 +3u1u0v1 +u0v0 +h2v1−h3u1v1−h3v0−u3
1v1−2u2

1v0− v3
1.
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We observe that if both v0 = v1 = 0, then S5,2 above is always zero. Then the result of the
Gröbner basis computation will not be the one displayed here. However, this case rarely happens,
as v1 = v0 = 0 implies that R is a 2-torsion element in Jac(H ). In odd characteristic, there are
at most 16 such elements. For the sake of clarity we do not display the summation set obtained
in this special case. Instead, we give an instantiated example on very small parameters. Let F=
F31, and H : y2 = x5+6x3+27x2+11x+29. We find P1 = (20,17),P2 = (17,7),P3 = (4,11) as
rational points in H , and the divisor P1+P2+P3−3P∞ reduces to R=(X2+13X+9,15X+12).
This gives the summation set{

e2
2 +26e2e1 +14e2

1 +26e2 +27e1 +27,
e3 +7e2 +20e1 +15.

One checks that both polynomials vanish at the symmetric expressions of the x(Pi)’s.

Even characteristic The general case gives equations such as H : y2 +h1(x)y = h0(x), with
degh1 ≤ 2 and degh0 = 5. If h1 j is the jth coefficient of h1, we obtain the following parametriza-
tion

e1 = a2
1 +h12a1 +h4 +h2 +u1,

e2 = u1a2
1 +h11a1 +h4u1 +h3 +h2u1 +h12v1 +u2

1 +u0,

e3 = u0a2
1 +h10a1 +h4u2

1 +h4u0 +h3u1 +h2u2
1 +h2u0 +h12u1v1 +h12v0 +h11v1 +u3

1 + v2
1.

We first compute a Gröbner basis of the elimination ideal as in the previous paragraph and
obtain:

S5,1 = e2
2 +u2

1e2
1 +(h2

12u1 +h12h11)e2 +(h12h11u1 +h2
11)e1 +h4h2

12u2
1 +h4h2

11 +h2
3 +h3h2

12u1 +h3h12h11

+h2h2
12u2

1 +h2h2
11 +h3

12u1v1 +h2
12h11v1 +h2

12u3
1 +h2

12u1u0 +h2
12v2

1 +h12h11u0 +h2
11u1 +u2

0,

S5,2 = (h12u1 +h11)e3 +(h12u0 +h10)e2 +(h11u0 +h10u1)e1 +h4h12u3
1 +h4h11u2

1 +h3h12u2
1 +h3h12u0

+h3h11u1 +h3h10 +h2h12u3
1 +h2h11u2

1 +h2
12u2

1v1 +h2
12u1v0 +h2

12u0v1 +h12h11v0 +h12h10v1 +h12u4
1

+h12u2
1u0 +h12u1v2

1 +h12u2
0 +h2

11v1 +h11u3
1 +h11u1u0 +h11v2

1 +h10u0.

One can instantiate formulae on small parameters to check the vanishing of the summation set.
For a type II genus 2 curve over F2d with d odd, an equation is y2 + xy = x5 + f3x3 + εx2 + f0,
ε ∈ F2, see 2.4. Then a summation set is way sparser:

S5,1(e1,e2,e3) = e2
2 +u2

1e2
1 + e1 +h2

3 +u1 +u2
0,

S5,2(e1,e2,e3) = e3 +u0e1 +h3u1 +u3
1 +u1u0 + v2

1 + v1 +1.

The expressions of those summation polynomials are also very similar to the genus 1 case.

3.2.2 Computation Timings

Timings in odd characteristic Table 2 shows the details of the computations for the first
sets of summation polynomials, expressed in the symmetric elementary functions e1, . . . ,em, for
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hyperelliptic curves with g = 2,3,4. The base field is F65521 and all the curves are given by a
general Weierstrass equation with randomized coefficients. The computation of the elimination
ideal was done using Magma 2.19 [2], on an Intel R© Xeon R©@2.93GHz processor. The time is
expressed in seconds, and averaged over several curves. Next columns give the average number
(rounded) of monomials and average total degree of elements in the summation set. The degree
is computed considering that degei = i. When a summation set Sm,R can be computed, we also
compute degV (Sm,R) using the Hilbert Series, see last column. We interrupted the computations
if any of our strategies could not compute the basis in less than 8 hours or if the needed memory
exceeded 120 GB.

genus g m #vars Time #Sm,R Avg. len. Avg. deg. degV (Sm,R)

2

3 4 0.000s 2 5 4 2
4 6 0.000s 7 28 10 4
5 8 0.18s 13 248 21 8
6 10 3505s 130 5901 50 16

3

4 5 0.000s 3 5 4 2
5 7 0.000s 6 16 8 4
6 9 0.22s 45 159 19 8
7 11 54.3s 194 2028 36 16
8 13 - - - - 32

4

5 6 0.00s 4 5 4 2
6 8 0.00s 7 15 8 4
7 10 0.03s 24 80 15 8
8 12 - - - - 16

Table 2: Computations of summations sets in odd characteristic

Timings in even characteristic: In Table 3 we report computation timings for the first sum-
mation sets for binary hyperelliptic curves of genus 2,3,4. This is done with Magma on the
same processor. The base field was fixed as F215 and curves’ coefficients were randomly chosen,
considering the most general case. In genus 2, we observe that the use of canonical forms speeds
up the computation and leads to sparser sets, because less non-zero coefficients in the curve’s
equation means less monomials in the support of the parametrization of Vm,R. The column head-
ings in the table are the same as in the previous paragraph, and we used the same criterion to
interrupt a lengthy computation.
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genus g m #vars Time #Sm,R Avg. len. Avg. deg. degV (Sm,R)

2

3 4 0.000s 2 5 4 2
4 6 0.000s 3 14 8 4
5 8 0.03s 5 89 17 8
6 10 12.7s 15 1032 36 16
7 12 - - - - -

3

4 5 0.000s 3 4 4 2
5 7 0.000s 4 12 7 4
6 9 0.1s 6 46 13 8
7 11 0.89s 14 276 23 16
8 13 - - - - 32

4

5 6 0.00s 4 4 4 2
6 8 0.00s 5 11 7 4
7 10 0.01s 7 40 12 8
8 12 0.3s 12 127 19 16
9 14 - - - - -

Table 3: Computation of summation sets in even characteristic

As for elliptic summation polynomials, computations are easier to complete in even charac-
teristic, and the summations sets’ elements are sparser and fewer.

3.3 Degree of summation Ideals

In general, the degree of an algebraic variety can be defined as the number of elements in a
“generic enough” subvariety of dimension 0. If the variety is a hypersurface, then it is also the
(total) degree of a defining polynomial. Because we are interested in solving 0-dimensional
systems linked to summation varieties, we need at least an estimation of degVm,R. This is the
purpose of this Section.

Let R be a point on an elliptic curve, and let Sm,R = Sm+1(X1, . . . ,Xm,x(R)) be the m+ 1th

elliptic summation polynomial evaluated at x(R). It is known [10] that degSm,R = 2m−1. This
fact added to the last column of Tables 2 and 3 leads us to the following conjecture.

Conjecture 19. Let H be a hyperelliptic curve of genus g ≥ 2, R ∈ Jac(H ) of weight g and
m≥ g+1. The degrees of the m-summation variety Vm,R and its projection V (Sm,R) are:

degVm,R = degV (Sm,R) = 2m−g.

Conjecture 19 is strengthened by the following informal discussion, where it is assumed that
the base field is algebraically closed. For an imaginary hyperelliptic curve H in a Weierstrass
model and P ∈H , we denote by −P the image of P by the canonical hyperelliptic involution
[−]. If x : H −→ P1 is the double cover given by the abscissa, for all m ∈ N∗, we let π :
H m/Sm −→ (P1)m/Sm denote the induced cover of degree 2m . Let R ∈ Jac(H ) of weight g.
With notations of Section 3.1, Proposition 17 tells us that π(Vm,R) =V (Im,R∩F[e]) =V (Sm,R)
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for any summation set4 Sm,R. Overall we have a commutative diagram

Vm,R
� � //

��

H m/Sm

π

��
V (Sm,R)

� � // (P1)m/Sm

If we consider a vanishing sum as P1 + · · ·+Pm−mP∞ = R on a genus g curve, then once m−g
points have been fixed the last g points are generally determined. In other words, dimV (Sm,R) =
m− g and if (e1, . . . ,em−g) ∈ Fm−g are given, then they determine em−g+1, . . . ,em such that
(e1, . . . ,em) ∈V (Sm,R). With a slight abuse of notations, the fiber π−1({e1, . . . ,em−g}) has 2m−g

elements, that all lead to a decomposition of R. While this is just a heuristic argument, it suggests
that degVm,R = 2m−g.

Now, whenever (e1, . . . ,em) is given in V (Sm,R), then it determines the two decompositions
R = P1 + . . .+Pm−mP∞ and −R = (−P1)+ · · ·+(−Pm)−mP∞. The latter is an element of the
larger variety V ′ = {(P1, . . . ,Pm) : ∑

m
i=1 Pi−mP∞ = ±R}, so the previous sentence informally

says that V ′/[−] ' Vm,R and that the projection π : V ′ −→ V (Sm,R) has degree at least 2. It is
possible to show that it has degree 2. Factoring this map through the quotient, we obtain that
Vm,R is birationally equivalent to V (Sm,R), the map giving the equivalence being the restriction
of π to Vm,R, so degV (Sm,R) = 2m−g.

3.4 Using summation polynomials for PDPm solving

In this section we fix a hyperelliptic curve H of genus g over Fqn , and R ∈ Jac(H ) of weight
g. Solving the PDPng related to R with the factor base B = {P−P∞ : P ∈H ,x(P) ∈ Fq}
can be done following [10][23] with a Weil Descent, which means we want to find points in a
0-dimensional subvariety of the Weil restriction of V (Sm,R).

Degree of a Weil restriction: For a variety V defined over Fqn , we denote by Wn(V ) its Weil
restriction over Fq. It is an algebraic variety defined over Fq with dimFq Wn(V ) = n ·dimFqn V and
degWn(V ) = (degV )n. If a generating set S for the (radical) ideal I associated with V is given,
we also use the notation Wn(S) or Wn(I). If Conjecture 19 holds, then degWn(Sm,R) = 2n(m−g)

in general, and in decomposition attacks where m = ng, we obtain

degWn(Sm,R) = 2n(n−1)g = dNag.

This has to be expected since we used the decomposition polynomial to both describe Nagao’s
approach and summation sets.

4In particular, summation ideals depend on the choice of the double cover. When g= 1, the authors of [17] use the
fact that different covers can be obtained by action of Aut(P1) = PGL2 to find a cover having a good behaviour with
respect to the group of symmetry of the m-summation variety and to compute summation polynomials associated to
this cover.
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A new solving algorithm for PDPng instances Let m= ng, e=(e1, . . . ,em), ē=(e1,1, . . . ,e1,n, . . . ,em,1, . . . ,em,n).
The solving algorithm is straightforward:

1. Compute a summation set Sm,R = {S1, . . . ,Sr} ⊂ Fqn [e].

2. Using a power basis 1, t, . . . , tn−1 of Fqn over Fq, write Si(e) = ∑
n−1
j=0 Si, j(ē)t j, and build the

system
{S1,0, . . . ,S1,n−1, . . . ,Sr,0, . . . ,Sr,n−1} ⊂ Fq[ē].

3. Build the system S = {Si, j(e1,0, . . . ,0,e2,0, . . . ,0, . . . ,em,0, . . . ,0) ∀ i, j} by evaluation.

4. Solve S over Fq with the standard Gröbner bases strategy.

5. For all solutions (e∗1, . . . ,e
∗
m) of S :

• check if F∗(X) = Xm +∑
m−1
i=0 (−1)m−ie∗m−iX

i is split over Fq.

– If it is, build the associated decomposition of R.

Steps 2,3 and 5 are usually done in time negligible compared to the others. While step 1 can
become a blocking step, as highlighted by the timings in Section 3.2.2, we assume it finishes in
reasonable time compared to step 4, for the sake of the following analysis. As codimV (Sm,R) =
g, we deduce that S contains more than m = ng equations. By construction, it also depends on
at most ng variables. The following general assumption is natural, and it was always true in our
experiments.

Genericity assumption 20. The Weil descent on summation varieties produces 0-dimensional
systems.

We already stated that the number of solutions of S is a good indicator of the complex-
ity of its solving. By definition of the degree of a variety, it follows that S has precisely
degWn(Sm,R) = 2n(n−1)g solutions. The efficiency of this algorithm should be really close to
that of Nagao’s, provided step 1 finishes in a reasonably short time.

3.5 On computational aspects of summation sets

We discuss the impact of the curve’s genus and the degree of the projection π : H m −→ (P1)m

induced by the cover H −→ P1 in the computation of summation set.

Obstruction for recursive computations: Semaev proposed [40] a recursive approach for
computing summation polynomials for a genus 1 curve E. It is found by decomposing a sum
into two smaller sums:

P1 + · · ·+Pm = O ⇔ ∀ k ∈ {2, . . . ,m−3}, ∃ Q ∈ E(F) :

{
P1 + · · ·+Pk = Q
Pk+1 + · · ·+Pm =−Q
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Using X as an indeterminate for the abscissae of the intermediate summand Q and xi = x(Pi), we
deduce that Sk+1(x1, . . . ,xk,X) and Sm−k+1(xk+1, . . . ,xm,X) have a common root. Hence their re-
sultant with respect to X must vanish. If we see Sk and Sm−k+1 in F[X1, . . . ,Xm,X ], then geomet-
rically this corresponds to the projection of V (Sk(X1, . . . ,Xk,X))∩V (Sm−k+1(Xk+1, . . . ,Xm,X))
on the m first coordinates. In general, both varieties are hypersurfaces in a m+ 1-dimensional
space. Thus their intersection has dimension m−1. The projection on a m-dimensional subspace
is then of codimension 1 and its defining ideal is indeed generated by the resultant with respect
to X of both summation polynomials.

However, this observation cannot be generalized in higher genus to obtain a recursive method
of computation. Because a fiber as π−1({x1, . . . ,xg}) has cardinality 2g, the projection of
V (Sk)∩V (Sm−k−2) describes more than the vanishing sums of m points (or their opposite).
Consequently, there is little hope to achieve a recursive algorithm that produces polynomials
with minimal degree using this approach.

Still, there are several ways to model the situation as an elimination problem. Because of
the above observation and the end of Section 3.1, the computation asks for the elimination of
at least g variables between two sets of polynomials, which seems harder to do than a resultant
between two polynomials. Computations indeed proved to be intractable in odd characteristic,
even for the simplest case. In even characteristic, a first set of polynomials for sums of size 4
could be computed in genus 2 — the running time of the computation was longer than with the
method of Section 3.1.

Usage in PDPm solving: In the algorithm of the previous section, the first step is to compute
a summation set related to a given R ∈ Jac(H ). This step can dominate the whole routine, and
its complexity is hard to derive, as not much is known on the cost of computing Gröbner bases
for elimination orders. Several strategies can be used to speed-up this computation, such as
eliminating variables in several steps instead of one. However, such strategies are mainly based
on observations made on the behaviour of the computation and the shape of a particular system.

Another approach would be to compute a more general type of summation sets, in the spirit
of what is done for decomposition attacks over elliptic curves. More precisely, we can compute
once and for all a generating set for the projection of the variety Vm = {(P1, . . . ,Pm+g) : ∑Pi−
(m+g)P∞ =O}, where O is the neutral element of Jac(H ), then evaluate it at the “coordinates”
of an R ∈ Jac(H ) that we try to decompose. Describing this variety can be done straightfor-
wardly following the presentation of Section 3.1, but considering the generic norm instead of
the decomposition polynomial. While such sets can be used to find decompositions of R, from
the point of view of the polynomial system solving, this approach will always be less efficient
because π(Vm) has degree greater than V (Sm,R) in general.

Indeed, let Sm be a generating set for the variety π(Vm). Assume R is represented by the
reduced divisor R1 + . . .+Rg− gP∞, and let e∗i be the symmetric expression of degree i eval-
uated at the x(Ri)’s. Let also H be the intersection of the hyperplanes ei− e∗i . Computing Sm

then specializing it at the e∗i ’s amounts to working in the variety V (Sm)∩H. In general, the
fiber π−1(π(R)) = {±R1 · · ·±Rg} contains 2g elements, so as soon as g ≥ 2, the previous va-
riety describes more tuples of points than we actually need, since we are only interested in the

25



decomposition of R (or −R). More precisely, we have generally

deg(V (Sm)∩H) = 2g−1 ·degV (Sm,R). (14)

First, this shows that working with V (Sm)∩H and V (Sm,R) is equivalent in genus 1. In fact
it can be shown that these varieties are equal: both are hypersurfaces of same degree, and the
latter is (informally) included in the former. In particular, if Sm+1 denotes the m+ 1 elliptic
(symmetrized) summation polynomial, it implies that Sm,R(e1, . . . ,em) = Sm+1(e1, . . . ,em,x(R)).
Second, it explains why it will always be less efficient to use Sm instead of Sm,R in PDPm solving
context when g≥ 2.

4 Reducing the degree of the ideals in Summation approach in even
characteristic

If a polynomial parametrization is generated by polynomials as Xi−Pi(a1, . . . ,al)
p in character-

istic p, the action of the Frobenius automorphism expresses as a non-standard “hidden” grading
on the polynomial algebra. This can be described by the weighted degree of an ideal, that can be
determined by computing the Hilbert series of the graded quotient algebra. The analysis of the
link between the Hilbert series of the involved ideals allows us to precisely quantify the impact
of the different grading, as the reduction factor is seen to be close to the product of the weights
involved in the grading. Instantiating to a PDPm context, this leads to a degree reduction of the
systems to be solved, akin to the one we describe in Section 2.2.

We emphasize here that it is possible to further reduce the degree in a PDPm setting modelled
by a summation approach, by exploiting the properties of the decomposition polynomial in a
different manner than in Section 2.2. However, a rigorous description of the reduction would
mean introducing more notations and subcases, and does not give more insight on the situation
either. Lastly, the best reduction we can obtain this way is equivalent to the one obtained in
Section 2.2. For this reason we do not go into more details in this reduction.

4.1 Action of the Frobenius automorphism over polynomial parametrizations

Let F be a perfect field of characteristic p ≥ 2, and σ(x) = xp the Frobenius automorphism. If
f = ∑cαmα ∈ F[X1, . . . ,Xm], we denote by f σ = ∑cp

αmα the polynomial obtained by Frobenius
action over its coefficients. We observe that f σ (X p

1 , . . . ,X
p
m) = f (X1, . . . ,Xm)

p. Assume m ≥
2, let 1 ≤ l ≤ k ≤ m be integers and let a = (a1, . . . ,al),X = (X1, . . . ,Xm). For polynomials
P1, . . . ,Pm ∈ F[a], we consider the ideals

I = 〈 Xi−Pi(a)p : 1≤ i≤ k ; Xi−Pi(a), k+1≤ i≤ m 〉 ,
J = 〈 Xi−Pi(a) : 1≤ i≤ m 〉 .

We also define their ideals of relations, i.e. the l-th elimination ideals

Ie = I∩F[X], Je = J∩F[X].
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Recall that all such ideals are radical — arguments have been given in Section 3.1. It is straight-
forward to check that (z1, . . . ,zm,a1, . . . ,al)∈V (I) if and only if ( p√z1, . . . , p√zk,zk+1, . . . ,zm,a1, . . . ,al)∈
V (J). This suggests a natural weight p on Xk+1, . . . ,Xm. We turn to elimination ideals and derive
a similar property.

Lemma 21. Let Ie = I∩F[X] and Je = J∩F[X] be the ideals of relations associated to I,J.

1. g ∈ Je⇔ gσ (X1, . . . ,Xk,X
p
k+1, . . . ,X

p
m) ∈ Ie.

2. g ∈ Ie⇔ g(X p
1 , . . . ,X

p
k ,Xk+1, . . . ,Xm) ∈ Je.

Proof. From the definition of Ie and Je we get

g ∈ Je⇔ g(P1, . . . ,Pm) = 0 and g ∈ Ie⇔ g(Pp
1 , . . . ,P

p
k ,Pk+1, . . . ,Pm) = 0.

Then we observe that

1. g ∈ Je⇔ g(P1, . . . ,Pm)
p = 0⇔ gσ (Pp

1 , . . . ,P
p
m) = 0⇔ gσ (X1, . . . ,Xk,X

p
k+1, . . . ,X

p
m) ∈ Ie.

2. g ∈ Ie⇔ g(X p
1 , . . . ,X

p
k ,Xk+1, . . . ,Xm) ∈ Je.

For any ideal I, let Ip = 〈 f p : f ∈ I〉. Write Ie = 〈 f1, . . . , fr〉 and Je = 〈g1, . . . ,gs〉, and define

I′ =
〈

gσ
i (X1, . . . ,Xk,X

p
k+1, . . . ,X

p
m),1≤ i≤ s

〉
,

J′ =
〈

fi(X
p
1 , . . . ,X

p
k ,Xk+1, . . . ,Xm) ,1≤ i≤ r

〉
,

then Lemma 21 states that I′ ⊂ Ie and J′ ⊂ Je. The next proposition makes this link precise.

Proposition 22. With the previous notations, Ip
e ⊂ I′ ⊂ Ie and Jp

e ⊂ J′ ⊂ Je.

Proof. Let f ∈ Ie. Lemma 21 gives that f (X p
1 , . . . ,X

p
k ,Xk+1, . . . ,Xm) ∈ Je. Hence there exists

qi ∈ F[X] such that

f (X p
1 , . . . ,X

p
k ,Xk+1, . . . ,Xm) =

s

∑
i=1

qi(X1, . . . ,Xm)gi(X1, . . . ,Xm).

We evaluate at X1, . . . ,Xk,X
p
k+1, . . .X

p
m and take p-th powers to obtain

f (X p
1 , . . . ,X

p
m)

p =
s

∑
i=1

qi(X1, . . . ,Xk,X
p
k+1, . . . ,X

p
m)

pgi(X1, . . . ,Xk,X
p
k+1, . . . ,X

p
m)

p

=
s

∑
i=1

qσ
i (X

p
1 , . . . ,X

p
k ,X

p2

k+1, . . . ,X
p2

m )gσ
i (X

p
1 , . . . ,X

p
k ,X

p2

k+1, . . . ,X
p2

m ),

which means that

f (X1, . . . ,Xm)
p =

s

∑
i=1

qσ
i (X1, . . . ,Xk,X

p
k+1, . . . ,X

p
m)g

σ
i (X1, . . . ,Xk,X

p
k+1, . . . ,X

p
m)

so that f p ∈ I′. The other inclusion follows similar arguments.
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Corollary 23. With the previous notations, Ie is the radical of I′ and Je is the radical of J′.

Proof. Proposition 22 implies that Ie ⊂
√

I′. As
√

I′ is the smallest radical ideal containing I′,
and since Ie is radical, then in fact Ie =

√
I′. The other statement is proved the same way.

Assuming the base field is algebraically closed, we know from Corollary 23 that
√

I′ = Ie,
so that I(V (I′)) = Ie and V (Ie) =V (I′). Then a tuple (z1, . . . ,zm) is in V (Ie) if and only if for all
1≤ i≤ s,

gσ
i (

p√z1
p, . . . , p√zk

p,zp
k+1, . . . ,z

p
m) = 0 = gi(

p√z1, . . . ,
p√zk,zk+1, . . . ,zm)

p,

equivalently, ( p√z1, . . . , p√zk,zk+1, . . . ,zm) ∈ V (Je). In other words it is equivalent to work with
V (Ie) or V (Je). Since the two associated ideals are radical, in practice we can use either Ie or Je

for computations. To proceed to degree analysis, we now need to introduce the weighted degree
of an ideal. This quantity can be computed using the Hilbert series of the quotient algebra, which
is the generating power series for the number of monomials of degree d, d ≥ 0, in the algebra.
It is defined for homogeneous ideals, but it can be extended to any ideals by considering its
homogenization. Indeed, the homogenization of the elements in a Gröbner basis for a degree
order is a Gröbner basis for the homogenization ideal [8, Thm. 4, p.388]. When the ideal is
radical, geometrically it amounts to working in the projective closure of the variety generated by
the ideal. More details can be found in [31][46].

Definition 24 ([46]). Let I be an ideal of dimension d in the graded algebra (K[X1, . . . ,Xn],w =
(w1, . . . ,wn)). Let HSI(T ) be the Hilbert series of K[X1, . . . ,Xn]/I. Let Q(T ) = (1−T )dHSI(T ).
The weighted degree of I is degw I = Q(1). The weighted degree of a variety is the weighted
degree of its associated ideal.

If the weights give the standard grading (i.e. w = (1, . . . ,1)), then Q(T ) is a polynomial and
the weighted degree is the classical degree of an ideal, denoted by deg I. We now use the ideals
I′, resp. J′ to estimate the weighted degree of Ie, resp. Je.

Proposition 25. For 1 ≤ i ≤ k, let wi = 1 and w′i = p, and for k < i ≤ m, let wi = p and
w′i = 1. For the systems of weights w = (w1, . . . ,wm) and w′ = (w′1, . . . ,w

′
m), we have degw Je =

deg I′

pm−k and degw′ Ie =
degJ′

pk .

Proof. Let first A = (F[X1, . . . ,Xm],(1, . . . ,1)) be the polynomial algebra with standard grading,
and consider the w-graded algebra Aw = (F[Y1, . . . ,Ym],(w1, . . . ,wm)). We see the ideal Je =
〈g1, . . . ,gs〉 in this algebra, and we let also Jσ

e = 〈gσ
1 , . . . ,g

σ
s 〉. Using the injective homomorphism

of graded algebras ϕ : Aw −→ A defined by ϕ(Yi) = Xwi
i , Lemma 21 restates as ϕ(Jσ

e ) = I′.
From [46, prop. 3.10, p.96], we have degw Jσ

e = degϕ(Jσ
e )

pm−k , so the last thing to do is to verify that
degw Je = degw Jσ

e .
Without loss of generality, we can assume that the generators of Je form a Gröbner basis for

some total degree order. Since LM(gi) = LM(gσ
i ) for all i, then {gσ

i : 1 ≤ i ≤ s} is a Gröbner
Basis for Jσ

e , hence degw Je = degw Jσ
e . The other equality is obtained by adapting the whole

argument.
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4.2 Application to summation varieties in even characteristic

Consider a hyperelliptic curve H : y2 +h1(x)y = h0(x) of genus g, defined over a (perfect) field
F of characteristic 2. Let R ∈ Jac(H ) of weight g and F be the associated m-decomposition
polynomial, for some m≥ g+1:

F(X) = Xm +
m−1

∑
i=0

Nm−i(a)X i.

If L1 is the length of h1, Proposition 11 tells us that F has k = g−L1 relevant squared coefficients.
Assume that L1 < g, and for simplicity, renumber the coefficients of F and the ei such that the
squares are N1(a) = Ñ1(a)2, . . . ,Nk(a) = Ñk(a)2. We will always assume this is the case through
the rest of this section. We focus on the ideal I associated to Vm,R and the ideal J defined by:

I = 〈 ei +Ni(a) : 1≤ i≤ m 〉 , Ie = I∩F[e],
J =

〈
ei + Ñi(a) : 1≤ i≤ k, ei +Ni(a), k+1≤ i≤ m

〉
, Je = J∩F[e]. (15)

A first benefit of using J instead of I is that some quadratic equations have been replaced by
linear equations. Hence it should be faster to compute a basis of Je than to compute a basis of Ie.
A second benefit is that the degree of the ideal obtained after Weil descent over Je is lower than
the one obtained with Ie. To show this, we need to highlight the differences between the degrees
of Je and Ie. However, Proposition 25 gives only a link between degw Je and deg I′. This prompts
the introduction of the next constant.

Definition 26. The degree ratio between I′ and Ie is noted C1 =
deg I′

deg Ie
.

Since I′ is the image of Jσ
e by an injective homomorphism of algebras, then dim I′= dimJe =

dim Ie. Since I′ ⊂ Ie, we infer that deg I′ ≥ deg Ie. With Proposition 22, we obtain 1≤C1 ≤ deg I2
e

deg Ie
.

We can now estimate the reduction factor obtained by working with Je.

Proposition 27. Let w = (w1, . . . ,wm) with w1 = . . . = wk = 1 and wk+1 = . . . = wm = 2 and
consider Je in the graded algebra (F[e],(w1, . . . ,wm)). We have:

degwV (Je) =C1 ·
degV (Ie)

2m−g+L1
.

Proof. Since Ie and Je are radical, we have degwV (Je) = degw Je and degV (Ie) = deg Ie for any
weight system. From Proposition 11, the decomposition polynomial has k = g− L1 squares
among its coefficients in X . Proposition 25 states that

degw Je =
deg I′

2m−g+L1
=

C1 ·deg Ie

2m−g+L1
.
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Experimentally from genus 2 to 4, in this setting, C1 is a power of 2 with exponent much
less than m−g+L1, so the weighted degree of V (Je) is indeed divided by a number close to the
product of the weights. In Conjecture 31, we state a value of its exponent.

In the context of a decomposition attack, the field is some F2dn , and m = ng. The Weil
descent involves cutting the Weil restriction of Je by hyperplanes. This is where the second
benefit of working with Je appears. The next result takes the grading into account when we cut
Wn(Je) by hyperplanes, and gives an estimate of the weighted degree of the zero-dimensional
ideal produced by the Weil descent.

Proposition 28. Keep previous notations, and assume that the field is now F2dn . Let I be the
ideal obtained by a Weil descent on Je. Under Genericity assumption 20, we have:

degw I=Cn
1 ·

degWn(Ie)

2(n−1)g+L1
.

Proof. With m = ng, Proposition 27 gives:

degw Wn(Je) =Cn
1 ·

degWn(Ie)

2n((n−1)g+L1)
.

Let 1, t, . . . , tn−1 be a basis of F2dn over F2d and write ei = ∑
n−1
j=0 ei, jt j. As the grading in-

volves the characteristic, it extends naturally to the Weil restriction. To see this, we observe
that e2

i = ∑
n−1
j=0 e2

i, jt
2 j, so that only squares of the ei, j will appear in this expression: in other

words the grading is applied on the new variables coming from the Weil restriction. Let w =
(w1,0,w1,1, . . . ,wng,n−1) with w1,0 =w1,1 = . . .=wk,n−1 = 1 and wk+1,0 =wk+1,1 = . . .=wng,n−1 =
2, and consider I(Wn(Je)) as an ideal in the w-graded algebra F2d [e1,0, . . . ,eng,n−1]. Geometri-
cally, the Weil descent amounts to cut Wn(Je) by the intersection of the (weighted) hyperplanes

H =
⋂

1≤i≤ng
1≤ j≤n−1

V (ei, j),

with degwV (ei, j) = 2 for g−L1+1≤ i≤ ng,1≤ j≤ n−1 and thus degw H = 2((n−1)g+L1)(n−1).
Let now I be the ideal associated to Wn(Je)∩H. With the Genericity assumption 20, its dimen-
sion is 0, so that the intersection has weighted degree degw I= degw Wn(Je) ·degw H. The claim
follows:

degw I=Cn
1 ·

degWn(Ie)

2n((n−1)g+L1)
·2((n−1)g+L1)(n−1)

=Cn
1 ·

degWn(Ie)

2(n−1)g+L1
.

If I is a zero-dimensional ideal in K[Y1, . . . ,Yn] graded by w, then degw I = dimK K[Y1, . . . ,Yn]/I,
where the dimension is meant as the dimension as a K-linear space. To see this, consider the

30



injective homomorphism of graded algebras ϕ : (K[Y1, . . . ,Yn],w)−→ (K[X1, . . . ,Xn],(1, . . . ,1))
defined by ϕ(Yi) = Xwi

i . Then dimϕ(I) = 0 and by [46, prop. 3.10] we have

degw I =
degϕ(I)
∏

n
i=1 wi

=
dimK K[X1, . . . ,Xn]/ϕ(I)

∏
n
i=1 wi

.

Now the image by ϕ of a Gröbner basis of I for the w-grevlex order is a Gröbner basis for
the grevlex order for ϕ(I). Informally, “going through ϕ” rescales the axis of K[Y1, . . . ,Yn]/I
by the corresponding weight. In particular this multiplies by ∏

n
i=1 wi the “volume under the

stair” of I, that is to say the number of monomials smaller than all the leading monomials
of the image Gröbner basis, with respect to the grevlex order. From this we obtain degw I =
dimK K[Y1, . . . ,Yn]/I, and this means that for zero-dimensional (radical) ideal, the weighted de-
gree also counts the number of elements in the associated variety. Hence, for a 0-dimensional
ideal I, we use the notation deg I to count its number of solutions, independently of the grading.

From the point of view of FGLM’s algorithm, this says that the complexity of the change-
order step can be expressed in term of the weighted degree of I. The next result formulates this
observation in the context of decomposition attacks, and sums up this section.

Corollary 29. Let H : y2 +h1(x)y = h0(x) be a genus g hyperelliptic curve defined over F2dn ,
and fix R ∈ Jac(H ) of weight g. Let L1 be the length of h1. The PDPng instance related to R
can be solved by computing a lexicographical Gröbner basis for a zero-dimensional ideal I of

degree Cn
1 ·

degWn(Ie)

2(n−1)g+L1
.

Remark 30. If Conjecture 19 is true, then degV (Ie) = degV (Sm,R) = 2m−g and degWn(Ie) =
2n(n−1)g. In this case Proposition 27 rewrites as degwV (Je) =C1 ·2−L1 , and Proposition 28 then
tells that degI=Cn

1 ·2(n−1)2g−L1 .

4.3 Analysis for genus 2 curves

We checked over thousands of genus 2 curves (of all types) that C1 was a power of 2 depending
on the polynomial h1 in the curve’s equation. More precisely,

C1 =


1, if H is Type Ib with h1(x) = x2, Type II, or Type III
2, if H is Type Ib with h1(x) 6= x2

4, if H is Type Ia.

Roughly, the more squares there are among the coefficients of the decomposition polynomial, the
closer deg I′ is to deg Ie and C1 is to 1. No square appears among the decomposition polynomial’s
coefficients if the type is Ia, hence no reduction can be obtained this way. If we consider the other
types of curves, and instantiate the formula of Proposition 28 for PDP2n where m = 2(n−1) and
the non-reduced degree is dNag = 22n(n−1), we obtain the following degrees:

Higher genus The value of the constant C1 seems to be linked with the length of h1, or more
accurately, to the rank of the 2-torsion in Jac(H ). The following additional experiments in
genus 3 (over thousands of curves) further confirmed our observation for the behaviour of C1:
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Type C1 L1 degI Reduction factor
Ib, h1(x) 6= x2 2 1 2(2n−1)(n−1) 2n−1

Ib, h1(x) = x2 1 0 22(n−1)2
22(n−1)

II or III 1 0 22(n−1)2
22(n−1)

Table 4: First step of degree reduction for genus 2 binary hyperelliptic curves.

• For curves with h1(x) ∈ {1,x,x2,x3}, we always observe C1 = 1.

• For curve with h1 a monic degree 2 polynomial with two distinct roots, we observe C1 = 2;
up to a linear change of variables, such polynomial have a shape x(x+α) for some α in
the ground field, and satisfies L1 = 1. If h1 is monic of degree 2 and irreducible, we
observe C1 = 4, and L1 = 2.

• When h1 is monic of degree 3 and split or has exactly one root in the base field, C1 = 4; up
to a linear change of variables, such polynomials have respectively a shape x(x+α)(x+β )
or (x2 +αx+β )x for some α,β in the ground field, thus L1 = 2. When h1 is monic and
irreducible of degree 3, then C1 = 8 with L1 = 3. Recall that there is no square among the
coefficients of the R-decomposition polynomial if h1 is irreducible.

A similar behaviour was identified for some cases in genus 4. From these observations, we
propose a conjecture to sum up this section:

Conjecture 31. Let H : y2 + h1(x)y = h0(x) be a hyperelliptic curve of genus g defined over
F2dn . Assume h1 is not irreducible of degree g and of length L1. Then the degree ratio C1 defined
in Proposition 27 is a power of 2 that only depends on the polynomial h1. More precisely, we
have:

C1 = 2L1 .

Using a summation modelling, a PDPng instance on H can then be solved by computing a
lexicographical Gröbner Basis of an ideal I of degree

degI= 2(n−1)((n−1)g+L1).

Remark 32. If Conjecture 31 is true, then we find the following bounds for the first reduction
step:

2(n−1)2g ≤ degI≤ 2(n−1)(ng−1).

While there is no known classification for binary hyperelliptic curves in general when g≥ 3,
the (squarefree part of the) polynomial h1 determines the 2-rank of Jac(H ). It may be possible
to classify all the possible degree reductions based on the squarefree decomposition of h1.

5 Comparisons of methods and practical impact

We proposed a new method to solve PDPm instances using summation polynomials instead
of Nagao’s approach. The natural question is now to compare them to estimate which one is
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the most efficient for a given task. We start by a quick comparison in odd characteristic, and
then turn to even characteristic. The timings we obtain show that, overall, Nagao with our
degree reduction algorithm is a better approach. We also see that the summation approach with
degree reduction is way faster than the standard Nagao’s approach. This illustrates the power
of the degree reduction in polynomial system solving. The section and the article ends with a
description of how we handle the realistic computation for a genus 2 Type II class group with
2184 elements.

5.1 Nagao vs summation in odd characteristic

Experiments of Table 5 were done on Fqn with q= 65521, n= 2,3, and imaginary genus 2 curves
given by general Weierstrass equation y2 = h(x). This means we look for 2n-decompositions of
a given R of weight g. For each approach, we listed the time needed to build the system, to
compute a basis in the Degree Reverse Lexicographical (DRL) order, then to obtain a lexico-
graphical basis with FGLM. For summation modelling, building the system means computing a
summation set for a given R of weight 2, that is to say, eliminating variables from a parametriza-
tion of the corresponding Vm,R. Implementation were done with Magma 2.19 [2], so that the
DRL Gröbner basis and its elimination basis are computed with F4, on the same computer as
the previous experiments of this article.

Table 5: Comparison of Nagao and summation modelling in odd characteristic

n Degree
Method

RatioNagao summation
System DRL FGLM Total System DRL FGLM Total

2 16 - 0.001s. 0.001s. 0.002s. 0.005s. 0.004s. 0.001 0.010 5
3 4096 - 159s. 1254s. 1413s. 137.6s* 2280s. 7358s. 9775s. 6.9

For n = 2, both approaches are extremely fast and of comparable speed. Therefore timings
of this row are averaged over thousands of tests, for several curves. For n = 3, we stress that a
well-planned computing strategy had to be designed to compute summation sets in reasonable
time. Indeed, eliminating without care the variables to compute S6,R takes more than 116000 sec.
We avoided this very long computation by eliminating only 3 variables in two steps, computing
a basis for weighted degree order — this is higlighted by a star in the table. The system is then
solved with the classic strategy.

Even if we assume that a symbolic summation set is given as raw input, we see that Nagao’s
modelling is faster by a ratio of nearly 7. This may be explained by the degree of the defining
equations obtained in summation modelling. Nagao’s approach always gives as many quadratic
equations as variables, whereas summation’s approach needs fewer variables but gives equations
of greater degree.
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5.2 Nagao vs summation for binary genus 2 curves

We focus on fields F2nd with d = 15, n = 3, and curves of type Ib with h1(x) = x2 as well as
curves of type II with h1(x) = x. This choice is made because these are curves where dopt = 64
can be reached for both modelling, as observed in Table 1 and Section 4. For n = 2, the systems
have degree 2 after the degree reduction. In particular a symbolic lexicographical Gröbner basis
could be precomputed, then solved for each new R. Therefore we did not consider this very
simple case. The results are gathered in Table 6.

To show the impact of the degree reduction we also give timings for “Old” approaches, that
is to say, Nagao or summation modelling without any degree reduction. Headings “Method”
refer to Nagao or summation approach. For each of those rows, the upper subrow gives the
timing for “Old” approach and the lower subrow gives timing for the new reduced approach.
“Style Ratio” is obtained by comparing Old and reduced approaches, and “Method Ratio” by
comparing reduced Nagao and reduced summation. In the first column, dold stands for the degree
of the system obtained with the old approach, while dred stands for the new reduced degree.

Table 6: Comparison of Nagao and summation modelling in even characteristic
Curve Method System DRL FGLM Total Style Ratio Method Ratio

Type Ib,
h1(x) = x2,
dold =
4096,
dred = 64

Nagao
- 166.76s. 34152s. !! 34318s. !!

1.7 ·106

17- 0.02s. 0.000s. 0.02s.

summation
1.04s. 0.9s. 8.7s. 10.64s.

31
0.27s. 0.06s. 0.01s. 0.34s.

Type II,
h1(x) = x,
dold =
4096,
dred = 64

Nagao
- 185.56s. 33917s. !! 34102s !!

1.1 ·106

14- 0.02s. 0.009s. 0.029s.

summation
0.84s. 0.65s. 7.7s. 9.19s.

23
0.27s. 0.14s. 0.01s. 0.42s.

The timings highlighted by exclamations marks are abnormally long. Since, once computed,
the lexicographical bases are not in Shape position, this suggests a problem in Magma 2.19
implementation5 of FGLM, as it should be faster to compute a lexicographical basis not in shape
position than a basis in shape position. To obtain a fairer comparison, we estimated the running
time of FGLM on random systems over F215 with n(n− 1)g = 12 quadratic equations in n(n−
1)g = 12 variables. The running time of FGLM for such systems (usually in shape Position)
is around 1500 sec. If we consider this time as a reference for the “Old” Nagao approach, the
speed-up ratio obtained by the reduced approach is around 75000.

We again used computational strategies to compute summation sets. The elimination basis
was computed for a weighted order, in two steps: of the 4 variables to be eliminated, three are
eliminated in a first step, then the last is eliminated. This strategy leads to important speed-
ups in our experiments for the elimination, but this step was still the bottleneck in the “reduced
summation” approach. Table 6 shows that “reduced” Nagao’s modelling is also practically faster
than the “reduced” summation modelling. For the next and final section of this article, we
therefore used a “reduced” Nagao’s approach to solve PDP instances.

5We did not try a more recent version.
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5.3 Running time of DLP solving for a realistic binary genus 2 curve

Let ω such that ω31+ω3+1 = 0 and F231 ' F2[ω], and let t such that t3+αt +β = 0 with α =
7BCEB1AC and β = 50F6CCC4. These values are obtained by considering α,β as polynomial
in ω , evaluate them at 2 and converting the integer we obtained in hexadecimal. Let also F293 =
F231·3 ' F231 [t]. We solve PDP6 instances using our refined Nagao modelling.

Type II curve: Let H : y2 + xy = x5 + f3x3 + x2 + f0, with

f3 =A814B6C09256168AC93ABA1,

f0 =16400CBCC65A5EE5F67165AC,

#H (F293) = 9903520314283080096056319534≥ 293

These parameters were obtained with several tries with Magma, until the cardinality of the class
group was large enough. Using the Magma 2.19 implementation of Vercauteren’s version [45]
of Kedlaya’s algorithm for counting points, it takes approximately 24 seconds to verify that the
class group has order

#Jac(H ) = 2×3×16346619102569543707881667303220993643142373107431938653,

which is nearly prime. Its largest prime factor is a 184 bit number, hence a generic attack method
would need around 292 operations.

We start by counting (with Magma) the elements in the factor basis B = {P : P∈H ,x(P)∈
F231} and find a set whose cardinality is a 31 bit number; its enumeration can be parallelized
easily. For example, with 8000 cores, each can enumerate on a subset of size 231/8000 ≈ 219

of a partition of F231 . A single Intel R©Xeon R©@2.93GHz cpu needs roughly 40 sec. to complete
its part of the enumeration.

The systems coming from the univariate polynomial among the defining equations can be
symbolically solved by hand. If we write R = (x2 +u1x+u0,v1x+v0), then N1(a4) = a2

4 +u1 =
(a4 +

√
u1)

2. Because the Frobenius automorphism fixes every subfield, N1(a4) ∈ F231 ⇔ a4 +√
u1 ∈ F231 . Hence if we let a4 = a4,0 + a4,1t + a4,2t2 and

√
u1 = u′1,0 + u′1,1t + u′1,2t2 then we

have
N1(a4) ∈ F231 ⇔ a4,i = u′1,i for i = 1,2.

Hence those values are directly known once an input R is given. It is even possible to precompute
a symbolic unsquared system S2 with a4,1,a4,2,u1 and u0 as parameters.

After this, the harvesting of relations is started. Each new R ∈ Jac(H ) to decompose6 is
computed using a pseudo-random walk, as proposed by Gaudry [24]. The symbolic unsquared
system

√
S2 is then evaluated at coordinates of R and corresponding values for a4,1,a4,2, fol-

lowing Section 2.2. The resulting system has 4 (resp. 6) linear (resp. quadratic) equations in 10
variables, and is solved following the classical strategy for 0-dimensional systems:

• a DRL Gröbner basis for
√

S2 is computed in 3.87 · 10−4 sec, using code generating
techniques and F5 [15] algorithm. We can check that

√
S2 has 64 solutions.

6If the input divisor is not of weight 2, then it is discarded and a new one is computed. This happens with
negligible probability, and never happened in our experiments.
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• With Sparse-FGLM algorithm [18], we obtain indeed a univariate polynomial of degree
64 in 5.93 ·10−4 sec.

• The last step of the solving process is to find its roots using NTL [43]. This is done in
2.22 ·10−3 sec.

As a comparison, with an AMD Opteron R©2.10 GHz and using Magma 2.19, computing the
DRL basis takes 0.08 sec., the (non sparse) FGLM step takes 0.08 sec. and computing the roots
of the degree 64 univariate polynomial takes 0.02 sec.

Overall, solving one PDP6 instance over H takes 3.2 ·10−3sec., and finding the roots of the
degree 64 univariate polynomial becomes the bottleneck of the computation. This is because we
did not try to use any optimization to speed-up this particular step. If such optimizations were
to be used, it is believable that the harvesting time could be slightly reduced. Memory-wise the
whole process is really efficient as approximately 1.1 MB is needed.

The probability to get a decomposition for each R is 1/6!, so we need in average 720×3.2 ·
10−3sec.= 2.3 sec. to find a relation. The factor basis has approximately 231 elements and is
invariant by the canonical involution on H , we would normally need around 231/2 = 230 rela-
tions to start linear algebra. However, computing at least twice this minimal number of relations
enables us to use efficient filtering techniques [3][5] to reduce the size of the matrix. Computing
more relations can lead to even more efficient filtering. Using 8000 cores, the harvesting phase
can be completed in a bit more than 7 days. The filtering is then performed and can reduce the
size from 231 to 250 millions rows (around 228) with 87 non-zero elements per row in average.
A sparse linear algebra algorithm — usually a block Wiedemann — is expected to run in around
263 operations.

This can be compared to the size of the matrices obtained after the filtering step in the record
factorizations of an RSA-768 modulus [32] or a 1061 bit number [6], and more interestingly, to
the recent computation of a discrete logarithm in a finite field of size 768 bits reported in [33].
There, the authors harvested around 10 billions relations in 4000 core years. After an efficient
and dedicated filtering, the linear algebra was done on a matrix with roughly 25 millions rows
and an average of 134 non-zero elements by row. Computation of the kernel was done modulo
a 767 bit integer in around 920 core years. By comparison, the harvesting could be run much
longer in our context: for example for 6 months, which is less than the harvesting duration of
[33], it can be hoped that around 235 relations could be obtained. The linear algebra in our
setting would be modulo a 184 bit integer. Assuming a dedicated filtering could be designed,
we may hope that the reduced matrix is small enough (for example, 50 millions row) so that the
computation can be done in comparable time with the 768 bits finite field DLP.

Conclusion: This practical simulation confirms that characteristic 2 curves defined on com-
posite extensions are weaker than their odd characteristic counterparts. This strenghtens that
curve-based cryptographic standards should avoid composite extensions whose degree has a
small factor. In particular, we highlighted that, on a binary genus 2 curve defined over an ex-
tension whose degree admit a factor of 3, an efficient harvesting phase can be designed. Indeed,
we showed that, using 8000 cores, around 1 week is needed to build an overdetermined matrix
for a curve satisfying a generic bound of 292. The degree reduction is linked to the length of
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the polynomial h1 defining the curve. The shorter h1 is, the more efficient the arithmetic can be,
but the more vulnerable the curve is to decomposition attacks. Therefore extensions with degree
having a small factor should in general be avoided for curves with short h1.
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