On the Ring-LWE and Polynomial-LWE problems

Miruna Roșca, Damien Stehlé, Alexandre Wallet

About today's talk

It's post-quantum (public-key) crypto time!

- Cryptography = building secure schemes
- Theoretical security $=$ reduction from hard ${ }^{\dagger}$ algorithmic problems
- Classical public-key crypto (RSA, DLog) broken by quantum computers.
\Rightarrow We need quantum hard ${ }^{\dagger}$ problems.

This talk is about:

- Lattice-based cryptography (a post-quantum assumption)
- Reductions between hard ${ }^{\dagger}$ problems related to lattices
- Theoretical stuff, but impacts the understanding of practical schemes
\dagger : at least conjecturally

About today's talk

It's post-quantum (public-key) crypto time!

- Cryptography = building secure schemes
- Theoretical security $=$ reduction from hard ${ }^{\dagger}$ algorithmic problems
- Classical public-key crypto (RSA, DLog) broken by quantum computers.

$$
\Rightarrow \text { We need quantum hard }{ }^{\dagger} \text { problems. }
$$

This talk is about:

- Lattice-based cryptography (a post-quantum assumption)
- Reductions between hard ${ }^{\dagger}$ problems related to lattices
- Theoretical stuff, but impacts the understanding of practical schemes
\dagger : at least conjecturally

"On variants of Polynomial-LWE and Ring-LWE" (EUROCRYPT 2018)

```
Results:
(A) The 3 settings are essentially the same
(B) Search = Decision in all settings.
```

Not described: Worst-case hardness for Polynomial-LWE.
\dagger : for a large number of "reasonable" polynomials, up to polynomial factors on noise, assuming some information about the field are known.
(1) LWE and Cryptography

- Regev's encryption scheme
- Learning With Errors (LWE) and its hardness
(2) Ring-based LWE
(3) Reductions between Ring-based LWE's
(4) Search to Decision
(5) Open problems

An encryption scheme [Regev'05]

n "security parameter", q prime, $n \leq m \leq \operatorname{poly}(n), D$ distribution over $\mathbb{Z}_{q}=\mathbb{Z} / q \mathbb{Z}$.
Alice
Eve
$\mathbf{s} \in \mathbb{Z}_{q}^{n}$
$\mathbf{A} \stackrel{\$}{\leftrightarrows} \mathbb{Z}_{q}^{m \times n} \begin{aligned} & e_{1} \hookleftarrow D \\ & \vdots \\ & e_{m} \hookleftarrow D\end{aligned} \quad \longrightarrow \quad \mathbf{A} \quad \mathbf{b}$
$\mathbf{b}=\mathbf{A}^{\mathbf{s}}+\mathbf{e} \bmod q$

Bruno

An encryption scheme [Regev'05]

n "security parameter", q prime, $n \leq m \leq \operatorname{poly}(n), D$ distribution over $\mathbb{Z}_{q}=\mathbb{Z} / q \mathbb{Z}$.

$$
\begin{aligned}
& \text { Alice } \\
& \mathbf{s} \in \mathbb{Z}_{q}^{n} \\
& \mathbf{A} \stackrel{\$}{ } \begin{array}{l}
\\
\\
\\
\\
\\
\\
\\
\\
e_{q}^{m \times n} \hookleftarrow D
\end{array} \\
& \mathbf{b}=\mathbf{A}^{\mathbf{s}}+\mathbf{e} \bmod q \\
& e^{\prime}=b^{\prime}-\left\langle\mathbf{a}^{\prime}, \mathbf{s}\right\rangle \bmod q \\
& \text { Eve } \\
& \text { A b } \\
& \longleftarrow \\
& \text { Bruno } \\
& \mu \in\{0,1\} \\
& \mathbf{c} \stackrel{\$}{\leftarrow}\{0,1\}^{m} \\
& \left(\mathbf{a}^{\prime}, b^{\prime}\right) \quad \longleftarrow \quad \mathrm{E}_{\mathbf{A}, \mathbf{b}}=\left(\mathbf{c}^{\top} \mathbf{A}, \mathbf{c}^{\top} \mathbf{b}+\mu\left\lceil\frac{q}{2}\right\rceil\right)
\end{aligned}
$$

An encryption scheme [Regev'05]

n "security parameter", q prime, $n \leq m \leq \operatorname{poly}(n), D$ distribution over $\mathbb{Z}_{q}=\mathbb{Z} / q \mathbb{Z}$.
$\operatorname{Dec}_{\mathrm{s}}\left(\mathbf{a}^{\prime}, b^{\prime}\right)=\left\{\begin{array}{l}0 \text { if } e^{\prime} \sim 0 \\ 1 \text { if } e^{\prime} \sim \frac{q}{2}\end{array}\right.$
Correctness: q, m, χ chosen s.t. $e^{\prime}=\sum e_{i} \leq \frac{q}{4}$ whp.

$$
\mu=0
$$

$$
\mu=1
$$

$$
\begin{aligned}
& \text { Alice } \\
& \mathbf{s} \in \mathbb{Z}_{q}^{n} \\
& \mathbf{A} \stackrel{\$}{ } \begin{array}{c}
\\
\\
\\
\\
\\
\\
\\
\mathbb{Z}_{q}^{m \times n}
\end{array} \quad \begin{array}{l}
e_{1} \\
\\
\\
e_{m} \hookleftarrow D
\end{array} \\
& \mathbf{b}=\mathbf{A}^{\mathbf{s}}+\mathbf{e} \bmod q \\
& e^{\prime}=b^{\prime}-\left\langle\mathbf{a}^{\prime}, \mathbf{s}\right\rangle \bmod q \\
& \longleftarrow \\
& \text { Eve } \\
& \text { Bruno } \\
& \mu \in\{0,1\} \\
& \mathbf{c} \stackrel{\$}{\leftarrow}\{0,1\}^{m} \\
& \left(\mathbf{a}^{\prime}, b^{\prime}\right) \longleftarrow \\
& \mathrm{E}_{\mathbf{A}, \mathbf{b}}=\left(\mathbf{c}^{\top} \mathbf{A}, \mathbf{c}^{\top} \mathbf{b}+\mu\left\lceil\frac{q}{2}\right\rceil\right)
\end{aligned}
$$

Learning With Errors [Regev'05]

$$
\begin{gathered}
n \in \mathbb{N}^{*}, q \leq \operatorname{poly}(n) \text { a prime } \\
\mathbb{Z}_{q}:=\mathbb{Z} / q \mathbb{Z}
\end{gathered}
$$

$D \rightarrow D_{\sigma}$ discrete Gaussian distribution

LWE distribution: Fix $s \in \mathbb{Z}_{q}^{n}$.

$$
A_{\mathrm{s}, \sigma, q}:\left\{\begin{array}{l}
\mathbf{a} \hookleftarrow \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right) \\
e \hookleftarrow D_{\sigma} \\
\text { outputs }(\mathbf{a}, b=(\langle\mathbf{a}, \mathbf{s}\rangle+e) \bmod q)
\end{array}\right.
$$

LWE hardness and lattices [Regev'05]

Euclidean lattice:

$\mathcal{L}(\mathbf{B}):=\mathbf{B} \cdot \mathbb{Z}^{n}=\left\{\mathbf{B} \mathbf{v}: \mathbf{v} \in \mathbb{Z}^{n}\right\}$
λ_{1} length of a shortest (non-0) vector

ApproxSVP ${ }_{\gamma}$: Given B, compute λ_{1} up to a factor γ.

For $\gamma=\operatorname{poly}(n)$, best known algo runs in time $2^{O(n)}$ (classic, quantum).

LWE hardness and lattices [Regev'05]

Euclidean lattice:

$\mathcal{L}(\mathbf{B}):=\mathbf{B} \cdot \mathbb{Z}^{n}=\left\{\mathbf{B} \mathbf{V}: \mathbf{v} \in \mathbb{Z}^{n}\right\}$
λ_{1} length of a shortest (non-0) vector

ApproxSVP ${ }_{\gamma}$: Given B, compute λ_{1} up to a factor γ.

For $\gamma=\operatorname{poly}(n)$, best known algo runs in time $2^{O(n)}$ (classic, quantum).

Practical limitations of LWE: public data size, speed.
A solution: use structured matrices/lattices.
(1) LWE and Cryptography
(2) Ring-based LWE

- Polynomial-LWE: ideal lattices
- Ring-LWE: more algebraic number theory
(3) Reductions between Ring-based LWE's

4 Search to Decision
(5) Open problems

Polynomial-LWE (PLWE) [SSTX09]

Change \mathbb{Z}_{q}^{n} to $R_{q}:=\mathbb{Z}_{q}[X] / f$. Good example: $f=X^{n}+1$, with $n=2^{d}$.
polynomials

$$
s=\sum s_{i} X^{i} \in R_{q}
$$

Produit: $a \cdot s \bmod f$
integer vectors/matrices

$$
\mathbf{s}=\left(s_{0}, \ldots, s_{n-1}\right)^{\top} \in \mathbb{Z}_{q}^{n}
$$

Mult. by a with structured matrix

$$
T_{f}(\mathbf{a})=\left[\begin{array}{cccc}
a_{0} & -a_{1} & \ldots & -a_{n-1} \\
a_{1} & a_{0} & \cdots & -a_{n-2} \\
\vdots & & \ddots & \vdots \\
a_{n-1} & a_{n-2} & \cdots & a_{0}
\end{array}\right]
$$

New Public key $=\left(\frac{T_{f}\left(\mathbf{a}_{1}\right)}{\vdots} \frac{T_{f}\left(\mathbf{a}_{k}\right)}{\vdots} \quad, \quad \mathbf{b}=\frac{T_{f}\left(\mathbf{a}_{1}\right)}{\vdots} \mathbf{S}+\frac{\mathbf{e}_{1}}{T_{f}\left(\mathbf{a}_{k}\right)} \quad \bmod q\right)$

Plain LWE

Polynomial-LWE (PLWE)

1 PLWE sample $=n$ correlated LWE samples.

PLWE and its hardness [SSTX'09]

$$
R=\mathbb{Z}[X] / f
$$

f monic, irreducible, degree n.
Σ : any pos.def.matrix
$D_{\Sigma} n$-dimensional Gaussian.

PLWE distribution: Fix $s \in R_{q}$

$$
\operatorname{PLWE}_{q, \Sigma, f, s}:\left\{\begin{array}{l}
a \hookleftarrow \mathcal{U}\left(R_{q}\right) \\
e \hookleftarrow D_{\Sigma} \\
\text { outputs }(a, b=(a \cdot s+e) \bmod q R)
\end{array}\right.
$$

Solve Search-PLWE \Rightarrow solve ApproxSVP Sin ideal lattices for 2

$$
\text { ideal lattice? Ex: } a R=\{\text { multiples of } a \text { in } R\} \longmapsto T_{f}(a) \cdot \mathbb{Z}^{n}
$$

PLWE and its hardness [SSTX'09]

$$
R=\mathbb{Z}[X] / f
$$

f monic, irreducible, degree n.
Σ : any pos.def.matrix
$D_{\Sigma} n$-dimensional Gaussian.

PLWE distribution: Fix $s \in R_{q}$

$$
\operatorname{PLWE}_{q, \Sigma, f, s}:\left\{\begin{array}{l}
a \hookleftarrow \mathcal{U}\left(R_{q}\right) \\
e \hookleftarrow D_{\Sigma} \\
\text { outputs }(a, b=(a \cdot s+e) \bmod q R)
\end{array}\right.
$$

Solve Search-PLWE \Rightarrow solve ApproxSVP $_{\gamma}$ in ideal lattices for $\gamma \leq \operatorname{poly}(n)$.
ideal lattice? Ex: $a R=\{$ multiples of a in $R\} \longmapsto T_{f}(a) \cdot \mathbb{Z}^{n}$

Practice vs. Theory

Perks:

\checkmark fast and compact operations
\checkmark post-quantum scheme

> New Hope (NIST competitor)

Public key: ~ 2 KBytes Handshake: $\sim 0.3 \mathrm{~ms}$

Theoretical limitations:
$X \quad \gamma$ depends on f^{\prime} 's "expansion factor"
x Working with R relies too much on f
\rightarrow Restricts "good f's"
\rightarrow Lack of generality/flexibility

Number fields and rings

$R=\mathbb{Z}[X] / f$ is a number ring. Lives in $K=\mathbb{Q}[X] / f$, a number field.
Structure: $K=\operatorname{Span}_{\mathbb{Q}}\left(1, X, \ldots, X^{n-1}\right)$ where $n=\operatorname{deg} f$
Field embeddings: $\sigma_{j}(a)=\sum a_{i} \alpha_{j}{ }^{i} \in \mathbb{C}$ where $f=\prod_{i \leq n}\left(X-\alpha_{j}\right)$.
f has s_{1} real roots and $2 s_{2}$ (conjugate) complex roots.

Two representations

Number fields and rings

$R=\mathbb{Z}[X] / f$ is a number ring. Lives in $K=\mathbb{Q}[X] / f$, a number field.
Structure: $K=\operatorname{Span}_{\mathbb{Q}}\left(1, X, \ldots, X^{n-1}\right)$ where $n=\operatorname{deg} f$
Field embeddings: $\sigma_{j}(a)=\sum a_{i} \alpha_{j}{ }^{i} \in \mathbb{C}$ where $f=\prod_{i \leq n}\left(X-\alpha_{j}\right)$.
f has s_{1} real roots and $2 s_{2}$ (conjugate) complex roots.

Two representations

Coefficient embedding
$a \longmapsto \mathbf{a}=\left(a_{0}, \ldots, a_{n-1}\right)^{\top} \in \mathbb{Q}^{n} \quad a \longmapsto \sigma(a)=\left(\sigma_{1}(a), \ldots, \sigma_{n}(a)\right)^{\top} \in H$ $\sigma(a b)=\left(\sigma_{i}(a) \sigma_{i}(b)\right)_{i \leq n}$
H is a \mathbb{R}-inner-product space of dimension n in \mathbb{C}^{n}
"canonical norm" $=$ "coefficient norm"

The ring of algebraic integers

$$
\mathcal{O}_{K}=\{x \in K \text { roots of monic polynomials in } \mathbb{Z}[X]\}
$$

It is a lattice: $\mathcal{O}_{K}=\mathbb{Z} b_{1}+\ldots+\mathbb{Z} b_{n}$ for some $b_{i} \in \mathcal{O}_{K}\left(b_{i} \neq 0\right)$.
(As any lattice, it has a dual \mathcal{O}_{K}^{\vee}.)
\mathcal{O}_{K} : regularization of $\mathbb{Z}[X] / f$ (in general, $R \subsetneq \mathcal{O}_{K}$)

It may not be possible to take $1, X, \ldots, X^{n-1}$ as a basis
\mathcal{O}_{K} : intrinsic to K. Structure independent from f

Computing a \mathbb{Z}-basis for \mathcal{O}_{K} is usually hard.

Ring-LWE (RLWE) [LPR10]

New ring choice: $\mathcal{O}_{K, q}=\mathcal{O}_{K} / q \mathcal{O}_{K}$.

$$
\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}: \text { roots of } f
$$

algebraic integers

$$
s \in \mathcal{O}_{K, q}^{\vee}
$$

Product: $a \cdot s$
complex vectors/matrices

$$
\sigma(s)=\left(s\left(\alpha_{1}\right), \ldots, s\left(\alpha_{n}\right)\right) \in \mathbb{C}^{n}
$$

Mult. by a coordinate-wise

$$
\begin{gathered}
\sigma(a s)=\left(a\left(\alpha_{1}\right) s\left(\alpha_{1}\right), \ldots, a\left(\alpha_{n}\right) s\left(\alpha_{n}\right)\right) \\
D(a):=\operatorname{Diag}\left(a\left(\alpha_{1}\right), \ldots, a\left(\alpha_{n}\right)\right)
\end{gathered}
$$

New Public key $=\left(\begin{array}{c}\frac{\mathrm{D}\left(a_{1}\right)}{\vdots} \\ \frac{\mathrm{D}\left(a_{k}\right)}{}\end{array}, \quad \mathbf{b}=\frac{\mathrm{D}\left(a_{1}\right)}{\vdots} \frac{\mathbf{S}}{\mathrm{D}\left(a_{k}\right)}+\frac{\mathbf{e}_{1}}{\vdots} \frac{\operatorname{en}}{\frac{\mathbf{e}_{k}}{}} \bmod q\right)$

RLWE [LPR'10]

$R \rightsquigarrow \mathcal{O}_{K}$, use canonical embedding.

$$
\begin{gathered}
H=\operatorname{Span}_{\mathbb{R}}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right) \\
D_{\Sigma}^{H}: e_{i} \stackrel{D_{\Sigma}}{ }, \text { outputs } e=\sum e_{i} \mathbf{v}_{i} \in H
\end{gathered}
$$

$\operatorname{RLWE}_{q, \Sigma, s}^{\vee}$ distribution: Fix $s \in \mathcal{O}_{K, q}^{\vee}:=\mathcal{O}_{K}^{\vee} / q \mathcal{O}_{K}^{\vee}$

$$
\operatorname{RLWE}_{q, \Sigma, s}^{\vee}:\left\{\begin{array}{l}
a \hookleftarrow \mathcal{U}\left(\mathcal{O}_{K, q}\right) \\
e \hookleftarrow D_{\Sigma}^{H} \\
\text { outputs }\left(a, b=(a s+e) \bmod q \mathcal{O}_{K}^{\vee}\right)
\end{array}\right.
$$

"Primal" variant: $\operatorname{RLWE}_{q, \Sigma, s}$ with $s \in \mathcal{O}_{K, q}:=\mathcal{O}_{K} / q \mathcal{O}_{K}$.

- the dual appears "naturally" in the reduction
- for some rings, describing the dual is easy
- (but then, so is getting to "primal" version)
\checkmark "Canonical" objects
\checkmark Flexible (theoretical) tools
\checkmark More general proofs

[LPR'10] Decision-RLWE ${ }^{\vee}=$ Search-RLWE ${ }^{\vee}$ for Galois fields [PRS'17] Decision \Rightarrow ApproxSVP for RLWE ${ }^{\vee}$, RLWE, PLWE

Situation?

[LPR'10] Decision-RLWE ${ }^{\vee}=$ Search-RLWE ${ }^{\vee}$ for Galois fields [PRS'17] Decision \Rightarrow ApproxSVP for RLWE ${ }^{\vee}$, RLWE, PLWE

Situation?

- Using RLWE ${ }^{\vee}$ variants
- \mathbb{Z}-basis of \mathcal{O}_{K} ?
\rightarrow Deal with \mathcal{O}_{K}^{\vee} and floating point numbers
\rightarrow long precomputations, non-uniform reductions

In practice (NewHope), $f=X^{2^{d}}-1, \mathcal{O}_{K}=\mathbb{Z}[X] / f$ and coeff. embedding.
What if cyclotomic fields are "weak"?

Situation and problems

(A) Relations between PLWE, RLWE, RLWE ${ }^{\vee}$?
(B) Are Decision and Search equivalent in Ring-based LWE?
(C) Are there "weaker" fields for ApproxSVP? For Ring-based LWE?
(D) Are there other (better?) structures than ideal lattices for LWE?

Situation and problems

(A) Relations between PLWE, RLWE, RLWE ${ }^{\vee}$?

Today
(B) Are Decision and Search equivalent in Ring-based LWE?
(C) Are there "weaker" fields for ApproxSVP? For Ring-based LWE? Ideal-ApproxSVP seems a bit weaker than expected [PHS19] Ring-LWE: short answer, we don't know yet.
(D) Are there other (better?) structures than ideal lattices for LWE? Short: yes [LS15,RSSS18].
(1) LWE and Cryptography

(2) Ring-based LWE

(3) Reductions between Ring-based LWE's - Controlled RLWE ${ }^{\vee}$ to RLWE

- From \mathcal{O}_{K} to R with the conductor
- Large families of nice polynomials

4 Search to Decision
(5) Open problems

Transforming samples [LPR'10, LPR'13]

Goal: map $\operatorname{RLWE}_{s, \Sigma}^{\vee}$ samples to $\operatorname{RLWE}_{s^{\prime}, \Sigma^{\prime}}$ samples

$$
\text { Want: } \theta: \begin{array}{rlc}
\mathcal{O}_{K, q} \times \mathcal{O}_{K, q}^{\vee} & \longrightarrow & \mathcal{O}_{K, q} \times \mathcal{O}_{K, q} \\
(a, b) & \longmapsto & \left(a^{\prime}, b^{\prime}\right)
\end{array}
$$

\square
New noise parameter: $\Sigma^{\prime}=\operatorname{diag}\left[\left|\sigma_{i}(\mathbf{t})\right|\right] \cdot \Sigma \cdot \operatorname{diag}\left[\left|\sigma_{i}(\mathbf{t})\right|\right]$

Questions:

1) Does such t exist? 2) How large is te?

Transforming samples [LPR'10, LPR'13]

Goal: map $\operatorname{RLWE}_{s, \Sigma}^{\vee}$ samples to $\operatorname{RLWE}_{s^{\prime}, \Sigma^{\prime}}$ samples

$$
\text { Want: } \theta: \begin{array}{cl}
\mathcal{O}_{K, q} \times \mathcal{O}_{K, q}^{\vee} & \longrightarrow \\
(a, b) & \longmapsto \\
\mathcal{O}_{K, q} \times \mathcal{O}_{K, q} \\
\left(a^{\prime}, b^{\prime}\right)
\end{array}
$$

Assume $\exists \mathbf{t} \in \mathcal{O}_{K}$ such that $[\times \mathbf{t}]: \mathcal{O}_{K, q}^{\vee} \simeq \mathcal{O}_{K, q}$. Let $\theta_{\mathbf{t}}(a, b)=(a, \mathbf{t} b \bmod q)$.
If $b=a s+e$, then $\mathbf{t} b=a(\mathbf{t} s)+\mathbf{t} e$, with $\mathbf{t} e \hookleftarrow D_{\Sigma^{\prime}}^{H}$
New noise parameter: $\Sigma^{\prime}=\operatorname{diag}\left[\left|\sigma_{i}(\mathbf{t})\right|\right] \cdot \Sigma \cdot \operatorname{diag}\left[\left|\sigma_{i}(\mathbf{t})\right|\right]$

Questions:

$$
\text { 1) Does such } t \text { exist? 2) How large is } t e \text { ? }
$$

From RLWE ${ }^{\vee}$ to RLWE

[LPR'10] Compute \mathbf{t} in poly (n)-time with CRT

\checkmark Existence

\times Size

Our result \mathbf{t}^{\dagger} : An adequate \mathbf{t} with $\|\sigma(\mathbf{t})\| \leq \operatorname{poly}(n)$ exists in an adequate lattice.
\checkmark Existence

Consequence: \quad solving $\operatorname{RLWE}_{q, \Sigma^{\prime}} \Rightarrow$ solving $\operatorname{RLWE}_{q, \Sigma}^{\vee}$

$$
\Sigma^{\prime} \underset{\text { loss }}{\stackrel{\operatorname{poly}(n)}{\leftarrow} \Sigma}
$$

\dagger : Improved in [PP'19] "Algebraically structured LWE: revisited"

Ingredients and tools

Our result: An adequate \mathbf{t} with $\|\sigma(\mathbf{t})\| \leq \operatorname{poly}(n)$ exists in an adequate lattice.

- Idea: sample Gaussians in $\left(\mathcal{O}_{K}^{\vee}\right)^{-1}$ (inverse of the dual)
- Main difficulty: achieving a small enough standard deviation
- Tools:
- Inclusion/exclusion
- Tail bounds on Gaussian distributions
- Smoothing parameters of lattices
- Case disjonction on factors' size (norm)
(1) LWE and Cryptography
(2) Ring-based LWE
(3) Reductions between Ring-based LWE's
- Controlled RLWE ${ }^{\vee}$ to RLWE
- From \mathcal{O}_{K} to R with the conductor
- Large families of nice polynomials
(4) Search to Decision
(5) Open problems

Mapping RLWE to PLWE-like

Goal: map $\operatorname{RLWE}_{s, \Sigma}$ samples to $\mathrm{PLWE}_{s^{\prime}, \Sigma^{\prime}}$ samples

$$
\text { Want: } \theta: \begin{array}{clc}
\mathcal{O}_{K, q} \times \mathcal{O}_{K, q} & \longrightarrow & R_{q} \times R_{q} \\
(a, b) & \longmapsto & \left(a^{\prime}, b^{\prime}\right)
\end{array}
$$

Result ${ }^{\dagger}$: We can find $[\times \mathbf{t}]: \mathcal{O}_{K, q} \simeq R_{q}$, such that $\|\sigma(\mathbf{t})\| \leq \operatorname{poly}(n)$, for some \mathbf{t} in the conductor ideal $\mathcal{C}_{R}=\left\{\mathbf{t} \in K: \mathbf{t} \mathcal{O}_{K} \subset R\right\}$.

$$
\text { - Control }\|\sigma(\mathbf{t})\| \text { with the same technique as earlier }
$$

\dagger : Improved in [PP19] "Algebraically structured LWE: revisited"

Mapping RLWE to PLWE-like

Goal: map $\operatorname{RLWE}_{s, \Sigma}$ samples to $\mathrm{PLWE}_{s^{\prime}, \Sigma^{\prime}}$ samples

$$
\text { Want: } \theta: \begin{array}{clc}
\mathcal{O}_{K, q} \times \mathcal{O}_{K, q} & \longrightarrow & R_{q} \times R_{q} \\
(a, b) & \longmapsto & \left(a^{\prime}, b^{\prime}\right)
\end{array}
$$

Result ${ }^{\dagger}$: We can find $[\times \mathbf{t}]: \mathcal{O}_{K, q} \simeq R_{q}$, such that $\|\sigma(\mathbf{t})\| \leq \operatorname{poly}(n)$, for some \mathbf{t} in the conductor ideal $\mathcal{C}_{R}=\left\{\mathbf{t} \in K: \mathbf{t} \mathcal{O}_{K} \subset R\right\}$.

\mathcal{C}_{R} "interpolates" between R and \mathcal{O}_{K}

$$
\begin{aligned}
& \text { Lemma: if } q \not \backslash \Delta(f) \text {, then } \\
& R_{q} \simeq \mathcal{C}_{R} / q \mathcal{C}_{R} \simeq \mathcal{O}_{K, q} .
\end{aligned}
$$

- Control $\|\sigma(\mathbf{t})\|$ with the same technique as earlier
\dagger : Improved in [PP19] "Algebraically structured LWE: revisited"

"Canonical noise"

Good candidate: $\theta_{\mathbf{t}}(a, b)=\left(\mathbf{t} a, \mathbf{t}^{2} b \bmod q\right)$, for \mathbf{t} as described.

$$
\text { If } b=a s+e \text {, then } \mathbf{t}^{2} b=(\mathbf{t} a)(\mathbf{t} s)+\mathbf{t}^{2} e \text {, with } \mathbf{t}^{2} e \hookleftarrow D_{\Sigma_{\mathbf{t}}}^{H}
$$

New noise parameter: $\Sigma_{\mathbf{t}}=\operatorname{diag}\left[\left|\sigma_{i}(\mathbf{t})\right|^{2}\right] \cdot \Sigma \cdot \operatorname{diag}\left[\left|\sigma_{i}(\mathbf{t})\right|^{2}\right]$

The catch:

$\mathbf{t}^{2} e$ lives in H, while PLWE_{f} asks for "coefficient" representation.

"Canonical" vs "Coefficient"

Relation between embeddings:

$$
\sigma(a)=\mathbf{V}_{f} \cdot \mathbf{a} \text {, with } \mathbf{V}_{f}=\left[\begin{array}{ccccc}
1 & \alpha_{1} & \alpha_{1}^{2} & \ldots & \alpha_{1}^{n-1} \\
1 & \alpha_{2} & \alpha_{2}^{1} & \ldots & \alpha_{2}^{n-1} \\
\vdots & & \ldots & & \vdots \\
1 & \alpha_{n} & \alpha_{n}^{2} & \ldots & \alpha_{n}^{n-1}
\end{array}\right]
$$

New noise: $\mathbf{V}_{f}^{-1} \sigma\left(\mathbf{t}^{2} e\right) \hookleftarrow D_{\Sigma^{\prime}}$, with $\Sigma^{\prime}=\mathbf{V}_{f}^{-\top} \Sigma_{\mathbf{t}} \mathbf{V}_{f}^{-1}$
Possible situations
\mathbf{V}_{f}^{-1} reasonable

$$
\mathbf{V}_{f}^{-1} \text { too large }
$$

$$
\mathbf{V}_{f}^{-1} \text { too skew }
$$

Inverse Vandermondes and roots separation

$$
\mathbf{V}_{f}^{-1}=\left(\frac{S_{i, j}}{\Delta_{j}}\right)_{i, j}, \text { where } \Delta_{j}=\prod_{k \neq j}\left(\alpha_{k}-\alpha_{j}\right)
$$

Main difficulties:

- Δ_{j} can be exponentially small [BM'04]

- Bound for a large class of polynomials

Goal: A large family of irreducible polynomials in $\mathbb{Z}[X]$ with $\left\|\mathbf{V}_{f}^{-1}\right\| \leq \operatorname{poly}(n)$.

Perturbations of a good situation

(1) $f:=X^{n}-c \in \mathbb{Z}[X]$, with $\alpha_{j}=c^{1 / n} \mathrm{e}^{2 i \pi \frac{j}{n}}$.
$\left\|\mathbf{V}_{f}^{-1}\right\|_{\infty}=1$.

Perturbations of a good situation

(1) $f:=X^{n}-c \in \mathbb{Z}[X]$, with $\alpha_{j}=c^{1 / n} \mathrm{e}^{2 i \pi \frac{j}{n}}$.
$\left\|\mathbf{V}_{f}^{-1}\right\|_{\infty}=1$.
(2) Let $P=\sum_{i=1}^{n / 2} p_{i} X^{i} \in \mathbb{Z}[X]$.

Perturbation: $g:=f+P=\prod_{i=1}^{n}\left(X-\beta_{j}\right)$
If " P small", β_{i} 's should stay close to α_{i} 's.

Perturbations of a good situation

(1) $f:=X^{n}-c \in \mathbb{Z}[X]$, with $\alpha_{j}=c^{1 / n} \mathrm{e}^{2 i \pi \frac{j}{n}}$.
$\left\|\mathbf{V}_{f}^{-1}\right\|_{\infty}=1$.
(2) Let $P=\sum_{i=1}^{n / 2} p_{i} X^{i} \in \mathbb{Z}[X]$.

Perturbation: $g:=f+P=\prod_{i=1}^{n}\left(X-\beta_{j}\right)$ If " P small", β_{i} 's should stay close to α_{i} 's.

Theorem (Rouché):

If $|P(z)|<|f(z)|$ on a circle, then f and $f+P$ have the same numbers of zeros inside this circle.

Completing the reduction

Result: We can exhibit exponentially many $f \in \mathbb{Z}[X]$, monic and irreducible, such that $\left\|\mathbf{V}_{f}^{-1}\right\| \leq \operatorname{poly}(n)$.

For any such f, we have in K_{f} :
solving $\mathrm{PLWE}_{q, \Sigma^{\prime}, f} \Rightarrow$ solving $\mathrm{RLWE}_{q, \Sigma}$

Search to Decision (shortest version)

Given: $(\mathbf{A}, \mathbf{b}=\mathbf{A} \mathbf{s}+\mathrm{e})+$ disting. oracle, find s .

Main steps:

Generate RLWE-like samples using Gaussians $t_{i} \hookleftarrow D_{\sigma, \mathcal{O}_{K}}$

Get good approximations of noise in poly time [PRS'17]

Difficulty: Find minimal σ s.t. linear combinations of t_{i} 's look uniform.

Result: Leftover Hash Lemma over number rings. a_{1}, \ldots, a_{m} : rows of A. Standard dev. $\sigma \geq \widetilde{O}\left(\sqrt{n} \cdot \Delta_{K}^{1 / n} \cdot q^{1 / m}\right)$.

If $t_{i} \hookleftarrow D_{\sigma, \mathcal{O}_{K}}$, then $\sum_{i \leq m} a_{i} t_{i}$ is essentially uniform.

A ring-based Leftover Hash Lemma

Result: (Leftover Hash Lemma)

$\left(a_{1}, \ldots, a_{k}, \sum_{i} a_{i} t_{i}\right)$ is statistically indistinguishable from a uniform tuple.

- Idea: Adapting [SS'11]'s result to a general context.
- Main difficulty: Lower bound on the shortest vectors of some q-ary lattice.
- Tools:
- Smoothing parameters of q-ary lattices
- Understand solutions of $a \cdot x=b$ in the ring $\mathcal{O}_{K, q}$
- Duality for q-ary module lattices
- Bound number of lattice points in a ball
(1) LWE and Cryptography
(2) Ring-based LWE
(3) Reductions between Ring-based LWE's

4 Search to Decision
(5) Open problems

Open Problems

Open Problems

Thank you :)

