On the Ring-LWE and Polynomial-LWE problems

Miruna Roșca, Damien Stehlé, Alexandre Wallet

About today's talk

It's post-quantum (public-key) crypto time!

- Cryptography = building **secure** schemes
- Theoretical security = reduction from hard^{\dagger} algorithmic problems
- Classical **public-key** crypto (RSA, DLog) broken by quantum computers.

 \Rightarrow We need quantum hard[†] problems.

This talk is about:

- Lattice-based cryptography (a post-quantum assumption)
- Reductions between hard[†] problems related to lattices
- Theoretical stuff, but impacts the understanding of practical schemes

†: at least conjecturally

About today's talk

It's post-quantum (public-key) crypto time!

- Cryptography = building **secure** schemes
- Theoretical security = reduction from hard^{\dagger} algorithmic problems
- Classical public-key crypto (RSA, DLog) broken by quantum computers.

 \Rightarrow We need quantum hard[†] problems.

This talk is about:

- Lattice-based cryptography (a post-quantum assumption)
- Reductions between hard[†] problems related to lattices
- Theoretical stuff, but impacts the understanding of practical schemes

†: at least conjecturally

"On variants of Polynomial-LWE and Ring-LWE" (EUROCRYPT 2018)

Results: (A) The 3 settings are essentially[†] the same (B) Search = Decision in all settings.

Not described: Worst-case hardness for Polynomial-LWE.

†: for a large number of "reasonable" polynomials, up to polynomial factors on noise, assuming some information about the field are known.

LWE and Cryptography

- Regev's encryption scheme
- Learning With Errors (LWE) and its hardness
- 2 Ring-based LWE
- 3 Reductions between Ring-based LWE's
- 4 Search to Decision
- 5 Open problems

An encryption scheme [Regev'05]

n "security parameter", q prime, $n \leq m \leq poly(n)$, D distribution over $\mathbb{Z}_q = \mathbb{Z}/q\mathbb{Z}$.

An encryption scheme [Regev'05]

n "security parameter", q prime, $n \leq m \leq poly(n)$, D distribution over $\mathbb{Z}_q = \mathbb{Z}/q\mathbb{Z}$.

An encryption scheme [Regev'05]

n "security parameter", q prime, $n \leq m \leq poly(n)$, D distribution over $\mathbb{Z}_q = \mathbb{Z}/q\mathbb{Z}$.

$$\mathsf{Dec}_{\mathbf{s}}(\mathbf{a}',b') = \begin{cases} 0 \text{ if } e' \sim 0 \\ 1 \text{ if } e' \sim \frac{q}{2} \end{cases}$$

Learning With Errors [Regev'05]

LWE distribution: Fix $\mathbf{s} \in \mathbb{Z}_q^n$.

$$A_{\mathbf{s},\sigma,q}: \begin{cases} \mathbf{a} \leftrightarrow \mathcal{U}(\mathbb{Z}_q^n) \\ e \leftrightarrow D_{\sigma} \\ \text{outputs } (\mathbf{a}, b = (\langle \mathbf{a}, \mathbf{s} \rangle + e) \bmod q) \end{cases}$$

Search

Decision

Distinguish

LWE hardness and lattices [Regev'05]

Euclidean lattice:

$$\mathcal{L}(\mathbf{B}) := \mathbf{B} \cdot \mathbb{Z}^n = \left\{ \begin{array}{c|c} \mathbf{B} & \mathbf{v} \\ \end{array} ; \mathbf{v} \in \mathbb{Z}^n \end{array} \right\}$$

 λ_1 length of a shortest (non-0) vector

ApproxSVP $_{\gamma}$: Given **B**, compute λ_1 up to a factor γ .

For $\gamma = poly(n)$, best known algo runs in time $2^{O(n)}$ (classic, quantum).

LWE hardness and lattices [Regev'05]

Euclidean lattice:

$$\mathcal{L}(\mathbf{B}) := \mathbf{B} \cdot \mathbb{Z}^n = \left\{ \begin{array}{c|c} \mathbf{B} & \mathbf{v} \\ \end{array} ; \mathbf{v} \in \mathbb{Z}^n \end{array} \right\}$$

 λ_1 length of a shortest (non-0) vector

ApproxSVP $_{\gamma}$: Given **B**, compute λ_1 up to a factor γ .

For $\gamma = \text{poly}(n)$, best known algo runs in time $2^{O(n)}$ (classic, quantum).

Practical limitations of LWE: public data size, speed.

A solution: use structured matrices/lattices.

LWE and Cryptography

2 Ring-based LWE

- Polynomial-LWE: ideal lattices
- Ring-LWE: more algebraic number theory

3 Reductions between Ring-based LWE's

- 4 Search to Decision
- 5 Open problems

Polynomial-LWE (PLWE) [SSTX09]

Change \mathbb{Z}_q^n to $R_q := \mathbb{Z}_q[X]/f$. Good example: $f = X^n + 1$, with $n = 2^d$.

polynomials

 $s = \sum s_i X^i \in R_q$

Produit: $a \cdot s \mod f$

integer vectors/matrices

$$\mathbf{s} = (s_0, \dots, s_{n-1})^\top \in \mathbb{Z}_q^n$$

Mult. by *a* with structured matrix

$$T_f(\mathbf{a}) = \begin{bmatrix} a_0 & -a_1 & \dots & -a_{n-1} \\ a_1 & a_0 & \dots & -a_{n-2} \\ \vdots & & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \dots & a_0 \end{bmatrix}$$

1 PLWE sample = n correlated LWE samples.

PLWE and its hardness [SSTX'09]

 $R = \mathbb{Z}[X]/f$ f monic, irreducible, degree n.

 Σ : any pos.def.matrix D_{Σ} *n*-dimensional **Gaussian**.

PLWE distribution: Fix $\boldsymbol{s} \in R_q$

$$\mathsf{PLWE}_{q,\Sigma,f,s}: \begin{cases} a \leftarrow \mathcal{U}(R_q) \\ e \leftarrow D_{\Sigma} \\ \mathsf{outputs} \ (a,b = (a \cdot s + e) \bmod qR) \end{cases}$$

Solve Search-PLWE \Rightarrow solve ApproxSVP $_{\gamma}$ in ideal lattices for $\gamma \leq poly(n)$.

ideal lattice? Ex: $aR = \{ \text{multiples of } a \text{ in } R \} \longmapsto T_f(a) \cdot \mathbb{Z}^n$

PLWE and its hardness [SSTX'09]

 $R = \mathbb{Z}[X]/f$ f monic, irreducible, degree n.

 Σ : any pos.def.matrix D_{Σ} *n*-dimensional **Gaussian**.

PLWE distribution: Fix $\boldsymbol{s} \in R_q$

$$\mathsf{PLWE}_{q,\Sigma,f,s}: \begin{cases} a \leftrightarrow \mathcal{U}(R_q) \\ e \leftrightarrow D_{\Sigma} \\ \mathsf{outputs} \ (a,b = (a \cdot s + e) \bmod qR) \end{cases}$$

Solve Search-PLWE \Rightarrow solve ApproxSVP $_{\gamma}$ in ideal lattices for $\gamma \leq poly(n)$.

ideal lattice? Ex: $aR = \{ \text{multiples of } a \text{ in } R \} \longmapsto T_f(a) \cdot \mathbb{Z}^n$

Perks:

- $\checkmark\,$ fast and compact operations
- ✓ post-quantum scheme

New Hope (NIST competitor)

 $\begin{array}{l} \mbox{Public key:} \sim 2 \mbox{ KBytes} \\ \mbox{Handshake:} \sim 0.3 \mbox{ ms} \end{array}$

Theoretical limitations:

- $\rightarrow\, {\sf Restricts}\; ``good \; f's''$
- $\rightarrow\,$ Lack of generality/flexibility

Number fields and rings

 $R = \mathbb{Z}[X]/f$ is a number ring. Lives in $K = \mathbb{Q}[X]/f$, a number field.

Structure: $K = \text{Span}_{\mathbb{Q}}(1, X, \dots, X^{n-1})$ where $n = \deg f$ Field embeddings: $\sigma_j(a) = \sum a_i \alpha_j^i \in \mathbb{C}$ where $f = \prod_{i \le n} (X - \alpha_j)$. f has s_1 real roots and $2s_2$ (conjugate) complex roots.

Coefficient embedding $\mathbf{a} \mapsto \mathbf{a} = (a_0, \dots, a_{n-1})^\top \in \mathbb{Q}^n$ $a \mapsto \sigma(a) = (\sigma_1(a), \dots, \sigma_n(a))^\top \in H$ $\sigma(ab) = (\sigma_i(a)\sigma_i(b))_{i \leq n}$

> *H* is a \mathbb{R} -inner-product space of dimension *n* in \mathbb{C}^n **"canonical norm"** \neq **"coefficient norm"**

Number fields and rings

 $R = \mathbb{Z}[X]/f$ is a number ring. Lives in $K = \mathbb{Q}[X]/f$, a number field.

Structure: $K = \text{Span}_{\mathbb{Q}}(1, X, \dots, X^{n-1})$ where $n = \deg f$

Field embeddings: $\sigma_j(a) = \sum a_i \alpha_j^i \in \mathbb{C}$ where $f = \prod_{i \leq n} (X - \alpha_j)$.

f has s_1 real roots and $2s_2$ (conjugate) complex roots.

Two representations

 $\begin{array}{ll} \text{Coefficient embedding} & \text{``Canonical'' embedding} \\ a\longmapsto \mathbf{a} = (a_0,\ldots,a_{n-1})^\top \in \mathbb{Q}^n & a\longmapsto \sigma(a) = (\sigma_1(a),\ldots,\sigma_n(a))^\top \in H \\ & \sigma(ab) = (\sigma_i(a)\sigma_i(b))_{i\leq n} \end{array}$

H is a \mathbb{R} -inner-product space of dimension *n* in \mathbb{C}^n "canonical norm" \neq "coefficient norm"

The ring of algebraic integers

 $\mathcal{O}_K = \{x \in K \text{ roots of monic polynomials in } \mathbb{Z}[X] \}$

It is a lattice: $\mathcal{O}_K = \mathbb{Z}b_1 + \ldots + \mathbb{Z}b_n$ for some $b_i \in \mathcal{O}_K$ $(b_i \neq 0)$. (As any lattice, it has a dual \mathcal{O}_K^{\vee} .)

 \mathcal{O}_K : regularization of $\mathbb{Z}[X]/f$ (in general, $R \subsetneq \mathcal{O}_K$)

It may not be possible to take $1, X, \dots, X^{n-1}$ as a basis

 \mathcal{O}_K : intrinsic to K. Structure independent from f

Computing a \mathbb{Z} -basis for \mathcal{O}_K is usually **hard**.

Ring-LWE (RLWE) [LPR10]

New ring choice:
$$\mathcal{O}_{K,q} = \mathcal{O}_K/q\mathcal{O}_K$$
.

 $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$: roots of f.

complex vectors/matrices

 $\sigma(s) = (s(\alpha_1), \dots, s(\alpha_n)) \in \mathbb{C}^n$

Mult. by *a* coordinate-wise $\sigma(as) = (a(\alpha_1)s(\alpha_1), \dots, a(\alpha_n)s(\alpha_n))$ $D(a) := \mathsf{Diag}(a(\alpha_1), \dots, a(\alpha_n)).$

 $s \in \mathcal{O}_{K,a}^{\vee}$

Product: $a \cdot s$

algebraic integers

RLWE [LPR'10]

 $R \rightsquigarrow \mathcal{O}_K$, use canonical embedding. Assume a \mathbb{Z} -basis of \mathcal{O}_K is known.
$$\begin{split} H = \mathsf{Span}_{\mathbb{R}}(\mathbf{v}_1, \dots, \mathbf{v}_n) \\ D_{\Sigma}^H : e_i & \hookleftarrow D_{\Sigma}, \text{ outputs } e = \sum e_i \mathbf{v}_i \in H. \end{split}$$

$$\begin{split} \mathbf{RLWE}_{q,\Sigma,s}^{\vee} \text{ distribution: Fix } s \in \mathcal{O}_{K,q}^{\vee} &:= \mathcal{O}_{K}^{\vee}/q\mathcal{O}_{K}^{\vee} \\ \\ \mathbf{RLWE}_{q,\Sigma,s}^{\vee} &: \begin{cases} a \hookleftarrow \mathcal{U}(\mathcal{O}_{K,q}) \\ e \hookleftarrow \mathcal{D}_{\Sigma}^{H} \\ \text{outputs } (a,b = (as + e) \bmod q\mathcal{O}_{K}^{\vee}) \end{cases} \end{split}$$

"Primal" variant: $\mathsf{RLWE}_{q,\Sigma,s}$ with $s \in \mathcal{O}_{K,q} := \mathcal{O}_K/q\mathcal{O}_K$.

- the dual appears "naturally" in the reduction
- for some rings, describing the dual is easy
- (but then, so is getting to "primal" version)

Situation?

- ullet Using RLWE^ee variants o Deal with \mathcal{O}_K^ee and floating point numbers
- Z-basis of \mathcal{O}_K ? \rightarrow long precomputations, **non-uniform** reductions

In practice (NewHope), $f = X^{2^d} - 1$, $\mathcal{O}_K = \mathbb{Z}[X]/f$ and coeff. embedding. What if cyclotomic fields are "weak"?

Situation?

- Using RLWE^{\vee} variants \rightarrow Deal with \mathcal{O}_K^{\vee} and floating point numbers
- \mathbb{Z} -basis of \mathcal{O}_K ? o long precomputations, **non-uniform** reductions

In practice (NewHope), $f = X^{2^d} - 1$, $\mathcal{O}_K = \mathbb{Z}[X]/f$ and coeff. embedding. What if cyclotomic fields are "weak"?

- (A) Relations between **PLWE**, **RLWE**, **RLWE** $^{\vee}$?
- (B) Are **Decision** and **Search** equivalent in Ring-based LWE?
- (C) Are there "weaker" fields for ApproxSVP? For Ring-based LWE?
- (D) Are there other (better?) structures than ideal lattices for LWE?

(A) Relations between **PLWE**, **RLWE**, **RLWE** $^{\vee}$?

Today

(B) Are Decision and Search equivalent in Ring-based LWE?

- (C) Are there "weaker" fields for ApproxSVP? For Ring-based LWE? Ideal-ApproxSVP seems a bit weaker than expected [PHS19] Ring-LWE: short answer, we don't know yet.
- (D) Are there other (better?) structures than ideal lattices for LWE? Short: yes [LS15,RSSS18].

1 LWE and Cryptography

2 Ring-based LWE

Reductions between Ring-based LWE's Ontrolled RLWE[∨] to RLWE

- From \mathcal{O}_K to R with the conductor
- Large families of nice polynomials
- 4 Search to Decision
- Open problems

Transforming samples [LPR'10, LPR'13]

Goal: map $\mathsf{RLWE}_{s,\Sigma}^{\vee}$ samples to $\mathsf{RLWE}_{s',\Sigma'}^{\vee}$ samples **Want:** $\theta : \begin{array}{ccc} \mathcal{O}_{K,q} \times \mathcal{O}_{K,q}^{\vee} & \longrightarrow & \mathcal{O}_{K,q} \times \mathcal{O}_{K,q} \\ (a,b) & \longmapsto & (a',b') \end{array}$

Assume $\exists \mathbf{t} \in \mathcal{O}_K$ such that $[\times \mathbf{t}] : \mathcal{O}_{K,q}^{\vee} \simeq \mathcal{O}_{K,q}$. Let $\theta_{\mathbf{t}}(a,b) = (a,\mathbf{t}b \mod q)$.

If b = as + e, then $\mathbf{t}b = a(\mathbf{t}s) + \mathbf{t}e$, with $\mathbf{t}e \leftrightarrow D_{\Sigma'}^H$

New noise parameter: $\Sigma' = \text{diag} \left[\left| \sigma_i(\mathbf{t}) \right| \right] \cdot \Sigma \cdot \text{diag} \left[\left| \sigma_i(\mathbf{t}) \right| \right]$

Questions:

1) Does such t exist? 2) How large is te?

Transforming samples [LPR'10, LPR'13]

Goal: map $\mathsf{RLWE}_{s,\Sigma}^{\vee}$ samples to $\mathsf{RLWE}_{s',\Sigma'}^{\vee}$ samples **Want:** $\theta : \begin{array}{ccc} \mathcal{O}_{K,q} \times \mathcal{O}_{K,q}^{\vee} & \longrightarrow & \mathcal{O}_{K,q} \times \mathcal{O}_{K,q} \\ (a,b) & \longmapsto & (a',b') \end{array}$

Assume $\exists \mathbf{t} \in \mathcal{O}_K$ such that $[\times \mathbf{t}] : \mathcal{O}_{K,q}^{\vee} \simeq \mathcal{O}_{K,q}$. Let $\theta_{\mathbf{t}}(a, b) = (a, \mathbf{t}b \mod q)$.

If
$$b = as + e$$
, then $\mathbf{t}b = a(\mathbf{t}s) + \mathbf{t}e$, with $\mathbf{t}e \leftrightarrow D_{\Sigma'}^H$

New noise parameter: $\Sigma' = \text{diag} [|\sigma_i(\mathbf{t})|] \cdot \Sigma \cdot \text{diag} [|\sigma_i(\mathbf{t})|]$

Questions:

1) Does such t exist? 2) How large is te?

From RLWE^\vee to RLWE

†: Improved in [PP'19] "Algebraically structured LWE: revisited"

Our result: An adequate t with $\|\sigma(t)\| \le poly(n)$ exists in an adequate lattice.

- Idea: sample Gaussians in $(\mathcal{O}_K^{\vee})^{-1}$ (inverse of the dual)
- Main difficulty: achieving a small enough standard deviation
- Tools:
 - Inclusion/exclusion
 - Tail bounds on Gaussian distributions

- Smoothing parameters of lattices
- Case disjonction on factors' size (norm)

1 LWE and Cryptography

2 Ring-based LWE

8 Reductions between Ring-based LWE's

- Controlled RLWE $^{\vee}$ to RLWE
- From \mathcal{O}_K to R with the conductor
- Large families of nice polynomials

4 Search to Decision

Open problems

Mapping RLWE to PLWE-like

Goal: map $\mathsf{RLWE}_{s,\Sigma}$ samples to $\mathsf{PLWE}_{s',\Sigma'}$ samples

Want:
$$\theta$$
: $\mathcal{O}_{K,q} \times \mathcal{O}_{K,q} \longrightarrow R_q \times R_q$
 $(a,b) \longmapsto (a',b')$

Result[†]: We can find $[\times \mathbf{t}] : \mathcal{O}_{K,q} \simeq R_q$, such that $||\sigma(\mathbf{t})|| \le poly(n)$, for some \mathbf{t} in the conductor ideal $\mathcal{C}_R = {\mathbf{t} \in K : \mathbf{t} \mathcal{O}_K \subset R}.$

 \mathcal{C}_R "interpolates" between R and \mathcal{O}_K

Lemma: if $q \not\mid \Delta(f)$, then $R_q \simeq C_R/qC_R \simeq \mathcal{O}_{K,q}.$

• Control $\|\sigma(\mathbf{t})\|$ with the same technique as earlier

†: Improved in [PP19] "Algebraically structured LWE: revisited"

Mapping RLWE to PLWE-like

Goal: map $\mathsf{RLWE}_{s,\Sigma}$ samples to $\mathsf{PLWE}_{s',\Sigma'}$ samples

Want:
$$\theta$$
: $\begin{array}{ccc} \mathcal{O}_{K,q} \times \mathcal{O}_{K,q} & \longrightarrow & R_q \times R_q \\ (a,b) & \longmapsto & (a',b') \end{array}$

Result[†]: We can find $[\times \mathbf{t}] : \mathcal{O}_{K,q} \simeq R_q$, such that $||\sigma(\mathbf{t})|| \le poly(n)$, for some \mathbf{t} in the conductor ideal $\mathcal{C}_R = {\mathbf{t} \in K : \mathbf{t} \mathcal{O}_K \subset R}.$

 \mathcal{C}_R "interpolates" between R and \mathcal{O}_K

Lemma: if $q \not| \Delta(f)$, then $R_q \simeq C_R / q C_R \simeq \mathcal{O}_{K,q}.$

• Control $\|\sigma(\mathbf{t})\|$ with the same technique as earlier

†: Improved in [PP19] "Algebraically structured LWE: revisited"

Good candidate: $\theta_t(a, b) = (ta, t^2b \mod q)$, for t as described.

If
$$b = as + e$$
, then $\mathbf{t}^2 b = (\mathbf{t}a)(\mathbf{t}s) + \mathbf{t}^2 e$, with $\mathbf{t}^2 e \leftrightarrow D_{\Sigma_*}^H$

New noise parameter: $\Sigma_t = \text{diag}[|\sigma_i(t)|^2] \cdot \Sigma \cdot \text{diag}[|\sigma_i(t)|^2]$

The catch:

 t^2e lives in H, while PLWE_f asks for "coefficient" representation.

Relation between embeddings:

$$\sigma(a) = \mathbf{V}_f \cdot \mathbf{a}, \text{ with } \mathbf{V}_f = \begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \dots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^{n-1} \\ \vdots & & & \vdots \\ 1 & \alpha_n & \alpha_n^2 & \dots & \alpha_n^{n-1} \end{bmatrix}$$

New noise:
$$\mathbf{V}_f^{-1} \sigma(\mathbf{t}^2 e) \leftrightarrow D_{\Sigma'}$$
, with $\Sigma' = \mathbf{V}_f^{-\top} \Sigma_{\mathbf{t}} \mathbf{V}_f^{-1}$

Inverse Vandermondes and roots separation

$$\mathbf{V}_{f}^{-1} = \left(\frac{S_{i,j}}{\Delta_{j}}\right)_{i,j}$$
, where $\Delta_{j} = \prod_{k \neq j} (\alpha_{k} - \alpha_{j})$.

Main difficulties:

• Δ_j can be exponentially small [BM'04]

• Bound for a large class of polynomials

Goal: A large family of irreducible polynomials in $\mathbb{Z}[X]$ with $\|\mathbf{V}_f^{-1}\| \le poly(n)$.

Perturbations of a good situation

(1)
$$f := X^n - c \in \mathbb{Z}[X]$$
, with $\alpha_j = c^{1/n} e^{2i\pi \frac{j}{n}}$.
 $\|\mathbf{V}_f^{-1}\|_{\infty} = 1.$

(2) Let $P = \sum_{i=1}^{n/2} p_i X^i \in \mathbb{Z}[X].$ Perturbation: $g := f + P = \prod_{i=1}^n (X - \beta_j)$

If ''P small'', eta_i 's should stay close to $lpha_i$'s.

Theorem (Rouché): If |P(z)| < |f(z)| on a circle, then f and f + P have the same numbers of zeros inside this circle.

Perturbations of a good situation

(1)
$$f := X^n - c \in \mathbb{Z}[X]$$
, with $\alpha_j = c^{1/n} e^{2i\pi \frac{j}{n}}$.
 $\|\mathbf{V}_f^{-1}\|_{\infty} = 1$.

(2) Let $P = \sum_{i=1}^{n/2} p_i X^i \in \mathbb{Z}[X].$ Perturbation: $g := f + P = \prod_{i=1}^n (X - \beta_i)$

If "*P* small", β_i 's should stay close to α_i 's.

Theorem (Rouché): If |P(z)| < |f(z)| on a circle, then f and f + P have the same numbers of zeros inside this circle.

Perturbations of a good situation

(1)
$$f := X^n - c \in \mathbb{Z}[X]$$
, with $\alpha_j = c^{1/n} e^{2i\pi \frac{j}{n}}$.
 $\|\mathbf{V}_f^{-1}\|_{\infty} = 1.$

(2) Let
$$P = \sum_{i=1}^{n/2} p_i X^i \in \mathbb{Z}[X].$$

Perturbation: $g := f + P = \prod_{i=1}^{n} (X - \beta_{j})$

If "*P* small", β_i 's should stay close to α_i 's.

Theorem (Rouché): If |P(z)| < |f(z)| on a circle, then f and f + P have the same numbers of zeros inside this circle.

Result: We can exhibit exponentially many $f \in \mathbb{Z}[X]$, monic and irreducible, such that $\|\mathbf{V}_{f}^{-1}\| \leq poly(n)$.

For any such f, we have in K_f :

solving $\mathsf{PLWE}_{q,\Sigma',f} \Rightarrow$ solving $\mathsf{RLWE}_{q,\Sigma}$

Search to Decision (shortest version)

Given: $\begin{pmatrix} \mathbf{A} \\ \mathbf{A} \end{pmatrix}$, $\mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e} \end{pmatrix}$ + disting. oracle, find \mathbf{s} . Main steps: Generate RLWE-like samples using Gaussians $t_i \leftarrow D_{\sigma, \mathcal{O}_K}$ Get good approximations of noise in poly time [PRS'17]

Difficulty: Find minimal σ s.t. linear combinations of t_i 's look uniform.

Result: Leftover Hash Lemma over number rings. a_1, \ldots, a_m : rows of **A**. Standard dev. $\sigma \geq \widetilde{O}(\sqrt{n} \cdot \Delta_K^{1/n} \cdot q^{1/m})$.

If $\underline{t_i} \leftrightarrow D_{\sigma, \mathcal{O}_K}$, then $\sum_{i \leq m} a_i \underline{t_i}$ is essentially uniform.

A ring-based Leftover Hash Lemma

Result: (Leftover Hash Lemma) $(a_1, \ldots, a_k, \sum_i a_i t_i)$ is statistically indistinguishable from a uniform tuple.

- Idea: Adapting [SS'11]'s result to a general context.
- Main difficulty: Lower bound on the shortest vectors of some q-ary lattice.
- Tools:
 - Smoothing parameters of *q*-ary lattices
 - Understand solutions of $a \cdot x = b$ in the ring $\mathcal{O}_{K,q}$

- Duality for *q*-ary **module** lattices
- Bound number of lattice points in a ball

LWE and Cryptography

- 2 Ring-based LWE
- 3 Reductions between Ring-based LWE's
 - 4 Search to Decision
- 5 Open problems

Open Problems

Open Problems

