On the Ring-LWE and Polynomial-LWE problems

Miruna Roșca, Damien Stehlé, Alexandre Wallet

"On variants of Polynomial-LWE and Ring-LWE" (EUROCRYPT 2018)

Results:

(A) The 3 settings are essentially ${ }^{\dagger}$ the same
(B) Search $=$ Decision in all settings.

Not described: Worst-case hardness for Polynomial-LWE.
\dagger : for a large number of "reasonable" polynomials, up to polynomial factors on noise, assuming some information about the field are known.
(1) LWE and Cryptography

- Regev's encryption scheme
- Learning With Errors (LWE) and its hardness
(2) Ring-based LWE
(3) Reductions between Ring-based LWE's
(4) Search to Decision
(5) Open problems

An encryption scheme [Regev'05]

n "security parameter", q prime, $n \leq m \leq \operatorname{poly}(n)$, χ distribution over $\mathbb{Z}_{q}=\mathbb{Z} / q \mathbb{Z}$.
Alice
Evil
$\mathrm{s} \in \mathbb{Z}_{q}^{n}$
$\mu \in\{0,1\}$
$\mathbf{A} \in \mathcal{M}_{m \times n}\left(\mathbb{Z}_{q}\right), e_{i} \hookleftarrow \chi$

$$
\longrightarrow(\mathbf{A}, \quad \mathbf{b})
$$

$\mathbf{b}=\mathbf{A} \mathbf{s}+\mathbf{e} \bmod q$

An encryption scheme [Regev'05]

n "security parameter", q prime, $n \leq m \leq \operatorname{pol} y(n)$, χ distribution over $\mathbb{Z}_{q}=\mathbb{Z} / q \mathbb{Z}$.

Alice
Evil
$\mathrm{s} \in \mathbb{Z}_{q}^{n}$

Bruno
$\mu \in\{0,1\}$

A $\in \mathcal{M}_{m \times n}\left(\mathbb{Z}_{q}\right), e_{i} \hookleftarrow \chi$ $\xrightarrow{\chi}(\mathbf{A}, \mathbf{b})$

$$
\mathbf{b}=\mathbf{A} \mathbf{s}+\mathbf{e} \bmod q
$$

$$
e^{\prime}=b^{\prime}-\left\langle\mathbf{a}^{\prime}, \mathbf{s}\right\rangle \bmod q \quad \longleftarrow \quad\left(\mathbf{a}^{\prime}, b^{\prime}\right) \quad \leftarrow \mathbf{E}_{\mathbf{A}, \mathbf{b}}(\mu)=\left(\sum_{i \in \mathcal{I}} \mathbf{a}_{i}, \sum_{i \in \mathcal{I}} b_{i}+\mu\left\lfloor\frac{q}{2}\right\rfloor\right)
$$

An encryption scheme [Regev'05]

n "security parameter", q prime, $n \leq m \leq \operatorname{poly}(n)$, χ distribution over $\mathbb{Z}_{q}=\mathbb{Z} / q \mathbb{Z}$.

Alice
$\mathrm{s} \in \mathbb{Z}_{q}^{n}$
Bruno

$$
\mu \in\{0,1\}
$$

$\mathbf{A} \in \mathcal{M}_{m \times n}\left(\mathbb{Z}_{q}\right), e_{i} \hookleftarrow \chi$

$$
\longrightarrow(\mathbf{A}, \mathbf{b})
$$

$\mathbf{b}=\mathbf{A} \mathbf{s}+\mathbf{e} \bmod q$

$$
e^{\prime}=b^{\prime}-\left\langle\mathbf{a}^{\prime}, \mathbf{s}\right\rangle \bmod q \quad \longleftarrow \quad\left(\mathbf{a}^{\prime}, b^{\prime}\right) \quad \leftarrow \mathrm{E}_{\mathbf{A}, \mathbf{b}}(\mu)=\left(\sum_{i \in \mathcal{I}} \mathbf{a}_{i}, \sum_{i \in \mathcal{I}} b_{i}+\mu\left\lfloor\frac{q}{2}\right\rfloor\right)
$$

$\operatorname{Dec}_{\mathrm{s}}\left(\mathbf{a}^{\prime}, b^{\prime}\right)=\left\{\begin{array}{lccc}0 \text { if } e^{\prime} \sim 0 & \text { Correctness: } q, m, \chi \text { chosen st. } e^{\prime}=\sum e_{i} \leq \frac{q}{4} \text { why } \\ 1 \text { if } e^{\prime} \sim \frac{q}{2} & \mu=0 & \mu=1\end{array}\right.$

Learning With Errors [R'05]

$n \in \mathbb{N}^{*}, q \leq \operatorname{poly}(n)$ a prime
$\mathbb{Z}_{q}:=\mathbb{Z} / q \mathbb{Z}$.
$\chi \rightarrow D_{r}$ discrete Gaussian distribution

LWE distribution: Fix $\mathrm{s} \in \mathbb{Z}_{q}^{n}$.

$$
A_{\mathrm{s}, D_{r}}:\left\{\begin{array}{l}
\mathbf{a} \hookleftarrow \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right) \\
e \hookleftarrow D_{r} \\
\text { outputs }(\mathbf{a}, b=(\langle\mathbf{a}, \mathrm{s}\rangle+e) \bmod q)
\end{array}\right.
$$

Search-LWE ${ }_{q, r}$:

$$
\text { From }(m \underbrace{\underset{~ A}{A}}_{n}, \quad \mathbf{b}=\mathbf{A} \mathbf{s}+\mathbf{e}) \text {, find } \mathbf{S}
$$

Hardness [R'05]

Decision-LWE ${ }_{q, D_{r}}$: Given $\left(\mathbf{a}_{i}, b_{i}\right)_{i \leq m}$ either from $A_{\mathrm{s}, D_{r}}$ or $\mathcal{U}\left(\mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}\right)$, decide which one was given.

Lattice $\mathcal{L}=\mathbf{A} \mathbb{Z}^{n}, \lambda_{1}=$ length of a shortest vector in $\mathcal{L} \backslash\{0\}$.
ApproxSVP ${ }_{\gamma}$: Given $d>0$, decide if $\lambda_{1} \leq d$ or $\lambda_{1}>d \gamma$.

For general lattices: | time | poly (n) | $2^{O(n)}$ |
| :---: | :---: | :---: |
| γ | $2^{\tilde{O}(n)}$ | $p o l y(n)$ |

Hardness [R'05]

Decision-LWE ${ }_{q, D_{r}}$: Given $\left(\mathbf{a}_{i}, b_{i}\right)_{i \leq m}$ either from $A_{\mathbf{s}, D_{r}}$ or $\mathcal{U}\left(\mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}\right)$, decide which one was given.

Lattice $\mathcal{L}=\mathbf{A} \mathbb{Z}^{n}, \lambda_{1}=$ length of a shortest vector in $\mathcal{L} \backslash\{0\}$.
ApproxSVP ${ }_{\gamma}$: Given $d>0$, decide if $\lambda_{1} \leq d$ or $\lambda_{1}>d \gamma$.

For general lattices: | time | $\operatorname{poly}(n)$ | $2^{O(n)}$ |
| :---: | :---: | :---: |
| | γ | $2^{\widetilde{O}(n)}$ |$| \operatorname{poly}(n)$

LWE in practice

Perks:

\checkmark simple description, simple operations
\checkmark flexible parameters, many possibilities
\checkmark post-quantum
Frodo †
(NIST competitor)

Public key ~ 11 KBytes
Handshake $\sim 2.5 \mathrm{~ms}$

Drawbacks:

```
< key-size
 speed (compared to other)
```

~ 400 bytes 32 bytes
$\sim 5 \mathrm{~ms} \quad \sim 1.3 \mathrm{~ms}$
$\dagger:[B C D++17]$
(1) LWE and Cryptography
(2) Ring-based LWE

- Polynomial-LWE: ideal lattices
- Ring-LWE: more algebraic number theory
(3) Reductions between Ring-based LWE's

4 Search to Decision
(5) Open problems

Add structure: ideal lattices

Change $\mathbb{Z} \rightsquigarrow R=\mathbb{Z}[X] / f$ f monic, irreducible, degree n.

polynomials

$$
s=\sum s_{i} X^{i} \in R_{q}=R / q R
$$

Product: $a \cdot s \bmod f$
Good example: $f=X^{n}+1, n=2^{d}$.

vectors/matrices

$$
\mathbf{s}=\left(s_{0}, \ldots, s_{n-1}\right) \in \mathbb{Z}_{q}^{n}
$$

Mult. by $a=$ use Toeplitz matrix

$$
T_{f}(a)=\left[\begin{array}{cccc}
a_{0} & a_{1} & \ldots & a_{n-1} \\
-a_{n-1} & a_{0} & \ldots & a_{n-2} \\
\vdots & & \ddots & \vdots \\
-a_{1} & -a_{2} & \ldots & a_{0}
\end{array}\right]
$$

Add structure: ideal lattices

Change $\mathbb{Z} \rightsquigarrow R=\mathbb{Z}[X] / f$ f monic, irreducible, degree n.

polynomials

$$
s=\sum s_{i} X^{i} \in R_{q}=R / q R
$$

Product: $a \cdot s \bmod f$

Noise: $e=\sum e_{i} X^{i}, e_{i} \hookleftarrow D_{r_{i}}$.
Sample: $(a, b=a \cdot s+e \bmod q R)$

Good example: $f=X^{n}+1, n=2^{d}$.

vectors/matrices

$$
\mathrm{s}=\left(s_{0}, \ldots, s_{n-1}\right) \in \mathbb{Z}_{q}^{n}
$$

Mult. by $a=$ use Toeplitz matrix

$$
\begin{aligned}
& T_{f}(a)=\left[\begin{array}{cccc}
a_{0} & a_{1} & \ldots & a_{n-1} \\
-a_{n-1} & a_{0} & \ldots & a_{n-2} \\
\vdots & & \ddots & \vdots \\
-a_{1} & -a_{2} & \ldots & a_{0}
\end{array}\right] \\
& \mathbf{e}=\left(e_{0}, \ldots, e_{n-1}\right) \in \mathbb{R}^{n}
\end{aligned}
$$

$$
\left(\mathbf{a}, b=T_{f}(a) \cdot \mathbf{s}^{\top}+\mathbf{e} \bmod q\right)
$$

Classic LWE

Polynomial-LWE (PLWE)

1 PLWE sample $=n$ correlated LWE samples.

PLWE and its hardness [SSTX'09]

$R=\mathbb{Z}[X] / f$
f monic, irreducible, degree n.
$\vec{r}=\operatorname{diag}\left(r_{i}\right)_{i \leq n}, r_{i} \geq 0$
$D_{\vec{r}} n$-dimensional Gaussian.

PLWE $_{q, \vec{r}, f}$ distribution: Fix $s \in R_{q}$

$$
\mathcal{B}_{s, D_{\vec{r}}}:\left\{\begin{array}{l}
a \hookleftarrow \mathcal{U}\left(R_{q}\right) \\
e \hookleftarrow D_{\vec{r}} \\
\text { outputs }(a, b=(a \cdot s+e) \bmod q R)
\end{array}\right.
$$

Search-PLWE ${ }_{q, \vec{r}, f}$ and Decision-PLWE ${ }_{q, \vec{r}, f}$ defined as before.

PLWE and its hardness [SSTX'09]

$R=\mathbb{Z}[X] / f$
f monic, irreducible, degree n.
$\vec{r}=\operatorname{diag}\left(r_{i}\right)_{i \leq n}, r_{i} \geq 0$
$D_{\vec{r}} n$-dimensional Gaussian.

PLWE $_{q, \vec{r}, f}$ distribution: Fix $s \in R_{q}$

$$
\mathcal{B}_{s, D_{\vec{r}}}:\left\{\begin{array}{l}
a \hookleftarrow \mathcal{U}\left(R_{q}\right) \\
e \hookleftarrow D_{\vec{r}} \\
\text { outputs }(a, b=(a \cdot s+e) \bmod q R)
\end{array}\right.
$$

Search-PLWE ${ }_{q, \vec{r}, f}$ and Decision-PLWE ${ }_{q, \vec{r}, f}$ defined as before.
polynomial ideal: $a R=\{$ multiples of a in $R\} \longmapsto T_{f}(a) \cdot \mathbb{Z}^{n}$: ideal lattice

Solve Search-PLWE \Rightarrow solve ApproxSVP $_{\gamma}$ in ideal lattices for $\gamma \leq \operatorname{poly}(n)$.

Practice vs. Theory

Perks:

\checkmark fast and compact operations
\checkmark still post-quantum

> New Hope ${ }^{\dagger}$ (NIST competitor)

Public key: ~ 2 KBytes Handshake: $\sim 0.3 \mathrm{~ms}$

Theoretical limitations:
$X \gamma$ depends on f 's "expansion factor"
x Working with R relies too much on f
\rightarrow Restricts "good f's"
\rightarrow Difficult proofs, lacks tools and flexibility
$\dagger:$ [ADPS'15]

Number fields and rings

$R=\mathbb{Z}[X] / f$ is a number ring. Lives in $K=\mathbb{Q}[X] / f$, a number field.
Structure: $K=\operatorname{Span}_{\mathbb{Q}}\left(1, X, \ldots, X^{n-1}\right)$ where $n=\operatorname{deg} f$
Field embeddings: $\sigma_{j}(a)=\sum a_{i} \alpha_{j}{ }^{i} \in \mathbb{C}$ where $f=\prod_{i \leq n}\left(X-\alpha_{j}\right)$.
f has s_{1} real roots and $2 s_{2}$ (conjugate) complex roots.

Number fields and rings

$R=\mathbb{Z}[X] / f$ is a number ring. Lives in $K=\mathbb{Q}[X] / f$, a number field.
Structure: $K=\operatorname{Span}_{\mathbb{Q}}\left(1, X, \ldots, X^{n-1}\right)$ where $n=\operatorname{deg} f$
Field embeddings: $\sigma_{j}(a)=\sum a_{i} \alpha_{j}{ }^{i} \in \mathbb{C}$ where $f=\prod_{i \leq n}\left(X-\alpha_{j}\right)$.
f has s_{1} real roots and $2 s_{2}$ (conjugate) complex roots.

The space $H=\left\{\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{s_{1}} \times \mathbb{C}^{2 s_{2}}: \forall i \geq 1, v_{i+s_{1}+s_{2}}=\overline{v_{i+s_{1}}}\right\}$.

Two representations

Coefficient embedding $a \longmapsto \mathbf{a}=\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Q}^{n}$

Minkowski embedding

$$
\begin{aligned}
a \longmapsto & \sigma(a)=\left(\sigma_{1}(a), \ldots, \sigma_{n}(a)\right) \in H \\
& \sigma(a b)=\left(\sigma_{i}(a) \sigma_{i}(b)\right)_{i \leq n}
\end{aligned}
$$

The ring of algebraic integers

$$
\mathcal{O}_{K}=\{x \in K \text { roots of monic polynomials in } \mathbb{Z}[X]\}
$$

It is a lattice: $\mathcal{O}_{K}=\mathbb{Z} b_{1}+\ldots+\mathbb{Z} b_{n}$ for some $b_{i} \in \mathcal{O}_{K}\left(b_{i} \neq 0\right)$.
Dual (lattice): $\mathcal{O}_{K}^{\vee}=\left\{\mathbf{y} \in H: \forall \mathbf{x} \in \mathcal{O}_{K},\langle\mathbf{y}, \mathbf{x}\rangle \in \mathbb{Z}\right\}$.
$\checkmark \mathcal{O}_{K}$ is a regularization of $R=\mathbb{Z}[X] / f$

- $R \subsetneq \mathcal{O}_{K}$ in general
$\checkmark \mathcal{O}_{K}$ is intrinsic to K : its structure does not depend on f

It may not be possible to take $1, X, \ldots, X^{n-1}$ as a basis

Computing a \mathbb{Z}-basis for \mathcal{O}_{K} is usually hard.

RLWE [LPR'10]

$R \rightsquigarrow \mathcal{O}_{K}$, use Minkowski embedding. $\quad H=\operatorname{Span}_{\mathbb{R}}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$
Assume a \mathbb{Z}-basis of \mathcal{O}_{K} is known. $D_{\vec{r}}^{H}: e_{i} \hookleftarrow D_{r_{i}}$, outputs $e=\sum e_{i} \mathbf{v}_{i} \in H$.
$\operatorname{RLWE}_{q, \vec{r}}^{\vee}$ distribution: Fix $s \in \mathcal{O}_{K, q}^{\vee}:=\mathcal{O}_{K}^{\vee} / q \mathcal{O}_{K}^{\vee}$

$$
\mathcal{A}_{s, D_{\vec{r}}}^{\vee}:\left\{\begin{array}{l}
a \hookleftarrow \mathcal{U}\left(\mathcal{O}_{K, q}\right) \\
e \hookleftarrow D_{\overrightarrow{\vec{r}}}^{H} \\
\text { outputs }\left(a, b=(a s+e) \bmod q \mathcal{O}_{K}^{\vee}\right)
\end{array}\right.
$$

Search-RLWE $\underset{q, \vec{r}}{\vee}$ and Decision-RLWE $\underset{q, \vec{r}}{\vee}$ defined as before.
"Primal" variant: $s \in \mathcal{O}_{K, q}:=\mathcal{O}_{K} / q \mathcal{O}_{K}$.
\checkmark Easier proofs/noise management
\downarrow
[LPR'10] Decision-RLWE ${ }^{\vee}=$ Search-RLWE ${ }^{\vee}$ for Galois fields [PRS'17] Decision \Rightarrow ApproxSVP for RLWE ${ }^{\vee}$, RLWE, PLWE

What is left?

- Using RLWE ${ }^{\vee}$ variants
- \mathbb{Z}-basis of \mathcal{O}_{K} ?
- In practice, f stays cyclotomic.
\rightarrow Need to deal with \mathcal{O}_{K}^{\vee}
\rightarrow long precomputations for some f 's, non-uniform reductions
\rightarrow What if cyclotomic fields are "weak"?

Situation and problems

(A) Relations between PLWE, RLWE, RLWE ${ }^{\vee}$?
(B) Are Decision and Search equivalent in Ring-based LWE?
(C) Are there "weaker" fields for ApproxSVP? For Ring-based LWE?
(D) Are there other (better?) structures than ideal lattices for LWE?

Situation and problems

(A) Relations between PLWE, RLWE, RLWE ${ }^{\vee}$?
(B) Are Decision and Search equivalent in Ring-based LWE?
(C) Are there "weaker" fields for ApproxSVP? For Ring-based LWE? "III-defined": [EHL'14, ELOS'15, CLS'15, HCS'16]
(D) Are there other (better?) structures than ideal lattices for LWE? Adressed in [LS'15, AD'17, RSSS'17]
(1) LWE and Cryptography
(2) Ring-based LWE
(3) Reductions between Ring-based LWE's - Controlled RLWE ${ }^{\vee}$ to RLWE

- From \mathcal{O}_{K} to R with the conductor
- Large families of nice polynomials

44 Search to Decision
(5) Open problems

Transforming samples [LPR'10, LPR'13]

Goal: map $\mathcal{A}_{s, \Sigma}^{\vee}$ to $\mathcal{A}_{s^{\prime}, \Sigma^{\prime}}$ and "uniform" to "uniform"
Want: $\begin{aligned} & \boldsymbol{O}_{K, q} \times \mathcal{O}_{K, q}^{\vee} \longrightarrow \mathcal{O}_{K, q} \times \mathcal{O}_{K, q} \\ &(a, b) \longmapsto \\ &\left(a^{\prime}, b^{\prime}\right)\end{aligned}$, respecting the distributions.

Transforming samples [LPR'10, LPR'13]

Goal: map $\mathcal{A}_{s, \Sigma}^{\vee}$ to $\mathcal{A}_{s^{\prime}, \Sigma^{\prime}}$ and "uniform" to "uniform" Want: $\theta: \begin{aligned} & \mathcal{O}_{K, q} \times \mathcal{O}_{K, q}^{\vee} \longrightarrow \mathcal{O}_{K, q} \times \mathcal{O}_{K, q} \\ &(a, b) \longmapsto \\ &\left(a^{\prime}, b^{\prime}\right)\end{aligned}$, respecting the distributions.

Assume $\exists \mathbf{t} \in \mathcal{O}_{K}$ such that $[\times \mathbf{t}]: \mathcal{O}_{K, q}^{\vee} \simeq \mathcal{O}_{K, q}$. Let $\theta_{\mathbf{t}}(a, b)=(a, \mathbf{t} b \bmod q)$.
If $(a, b) \hookleftarrow \mathcal{A}_{s, \Sigma}^{\vee}$:
$\mathbf{t} b=a(\mathbf{t} s)+\mathbf{t} e, \mathbf{t} e \hookleftarrow D_{\Sigma^{\prime}}^{H}$
$[\times \mathbf{t}]$ isomorphism $\Rightarrow(a, \mathbf{t} b)$ uniform
$\Sigma^{\prime}=\operatorname{diag}\left[\left|\sigma_{i}(\mathbf{t})\right|\right] \cdot \Sigma \cdot \operatorname{diag}\left[\left|\sigma_{i}(\mathbf{t})\right|\right]$

Questions:

1) Does such texist? 2) How large is $t e$?

From RLWE ${ }^{\vee}$ to RLWE

[LPR'10] Compute \mathbf{t} in poly (n)-time with CRT
\checkmark Existence
\times Size

Our result: An adequate \mathbf{t} with $\|\sigma(\mathbf{t})\| \leq \operatorname{poly}(n)$ exists in an adequate lattice.
\checkmark Existence \checkmark Size

Consequence: solving $\operatorname{RLWE}_{q, \Sigma^{\prime}} \Rightarrow$ solving $\operatorname{RLWE}_{q, \Sigma}^{\vee}$

$$
\Sigma^{\prime} \underset{\text { loss }}{\stackrel{p o l y}{ }(n)} \Sigma
$$

Ingredients and tools

Our result: An adequate \mathbf{t} with $\|\sigma(\mathbf{t})\| \leq \operatorname{poly}(n)$ exists in an adequate lattice.

- Idea: use Gaussian sampling in $\left(\mathcal{O}_{K}^{\vee}\right)^{-1}$.
- Main difficulty: achieving a small enough standard deviation
- Require factorization of $q \mathcal{O}_{K}$ in prime ideals in \mathcal{O}_{K} (non-uniform reduction)

Ingredients and tools

Our result: An adequate \mathbf{t} with $\|\sigma(\mathbf{t})\| \leq \operatorname{poly}(n)$ exists in an adequate lattice.

- Idea: use Gaussian sampling in $\left(\mathcal{O}_{K}^{\vee}\right)^{-1}$.
- Main difficulty: achieving a small enough standard deviation
- Require factorization of $q \mathcal{O}_{K}$ in prime ideals in \mathcal{O}_{K} (non-uniform reduction)
- Tools:
- Inclusion/exclusion
- Case disjonction on factors' size (norm)
- "Smoothness parameters" of lattices
- Tail bounds on Gaussian distributions
(1) LWE and Cryptography
(2) Ring-based LWE
(3) Reductions between Ring-based LWE's
- Controlled RLWE ${ }^{\vee}$ to RLWE
- From \mathcal{O}_{K} to R with the conductor
- Large families of nice polynomials

44 Search to Decision
(5) Open problems

Mapping RLWE to PLWE-like

Goal: map $\mathcal{A}_{s, \Sigma}$ to $\mathcal{B}_{s^{\prime}, \Sigma^{\prime}}$ and "uniform" to "uniform"
Want: $\theta: \begin{array}{cl}\mathcal{O}_{K, q} \times \mathcal{O}_{K, q} & \longrightarrow R_{q} \times R_{q} \\ (a, b) & \longmapsto \\ \left(a^{\prime}, b^{\prime}\right)\end{array}$, respecting the distributions.

Result: We can find $[\times \mathbf{t}]: \mathcal{O}_{K, q} \simeq R_{q}$, such that $\|\sigma(\mathbf{t})\| \leq \operatorname{poly}(n)$, for some \mathbf{t} in the conductor ideal $\mathcal{C}_{R}=\left\{\mathbf{t} \in K: \mathbf{t} \mathcal{O}_{K} \subset R\right\}$.

Mapping RLWE to PLWE-like

Goal: map $\mathcal{A}_{s, \Sigma}$ to $\mathcal{B}_{s^{\prime}, \Sigma^{\prime}}$ and "uniform" to "uniform"
Want: $\theta: \begin{array}{cl}\mathcal{O}_{K, q} \times \mathcal{O}_{K, q} & \longrightarrow R_{q} \times R_{q} \\ (a, b) & \longmapsto\left(a^{\prime}, b^{\prime}\right)\end{array}$, respecting the distributions.

Result: We can find $[\times \mathbf{t}]: \mathcal{O}_{K, q} \simeq R_{q}$, such that $\|\sigma(\mathbf{t})\| \leq \operatorname{poly}(n)$, for some \mathbf{t} in the conductor ideal $\mathcal{C}_{R}=\left\{\mathbf{t} \in K: \mathbf{t} \mathcal{O}_{K} \subset R\right\}$.

\mathcal{C}_{R} "interpolates" between R and \mathcal{O}_{K}

$$
\begin{aligned}
& \text { Lemma: if } q \not \backslash \Delta(f) \text {, then } \\
& R_{q} \simeq \mathcal{C}_{R} / q \mathcal{C}_{R} \simeq \mathcal{O}_{K, q} .
\end{aligned}
$$

- Control $\|\sigma(\mathbf{t})\|$ with the same technique as earlier

"Minkowski noise"

Good candidate: $\theta_{\mathbf{t}}(a, b)=\left(\mathbf{t} a, \mathbf{t}^{2} b \bmod q\right)$, for \mathbf{t} as above

$$
\begin{array}{l|l}
\text { If }(a, b) \hookleftarrow \mathcal{A}_{s, \Sigma}: & \begin{array}{l}
\text { If }(a, b) \hookleftarrow \text { uniform: } \\
\\
\mathbf{t}^{2} b=(\mathbf{t} a)(\mathbf{t} s)+\mathbf{t}^{2} e
\end{array} \\
\qquad \quad \begin{array}{l}
\text { (} \mathbf{t}] \text { isomorphism } \Rightarrow\left(\mathbf{t} a, \mathbf{t}^{2} b\right) \text { uniform }
\end{array} \\
\qquad e^{\prime}=\mathbf{t}^{2} e \hookleftarrow D_{\Sigma_{\mathbf{t}}}^{H}, \text { where } \Sigma_{\mathbf{t}}=\operatorname{diag}\left[\left|\sigma_{i}(\mathbf{t})\right|^{2}\right] \cdot \Sigma \cdot \operatorname{diag}\left[\left|\sigma_{i}(\mathbf{t})\right|^{2}\right] .
\end{array}
$$

e^{\prime} lives in H, while PLWE $_{f}$ asks for "Coefficient" representation.

"Minkowski" vs "Coefficient"

Relation between embeddings:

$$
\sigma(a)=\mathbf{V}_{f} \cdot \mathbf{a} \text {, with } \mathbf{V}_{f}=\left[\begin{array}{ccccc}
1 & \alpha_{1} & \alpha_{1}^{2} & \ldots & \alpha_{1}^{n-1} \\
1 & \alpha_{2} & \alpha_{2}^{2} & \ldots & \alpha_{2}^{n-1} \\
\vdots & & \ldots & & \vdots \\
1 & \alpha_{n} & \alpha_{n}^{2} & \ldots & \alpha_{n}^{n-1}
\end{array}\right]
$$

New noise: $\mathbf{V}_{f}^{-1} \sigma\left(e^{\prime}\right) \hookleftarrow D_{\Sigma^{\prime}}$, with $\Sigma^{\prime}=\mathbf{V}_{f}^{-\top} \Sigma_{\mathbf{t}} \mathbf{V}_{f}^{-1}$
Possible situations
\mathbf{V}_{f}^{-1} reasonable

$$
\mathbf{V}_{f}^{-1} \text { too large }
$$

\mathbf{V}_{f}^{-1} too skew

Inverse Vandermondes and roots separation

$$
\mathbf{V}_{f}^{-1}=\left(\frac{S_{i, j}}{\Delta_{j}}\right)_{i, j}, \text { where } \Delta_{j}=\prod_{k \neq j}\left(\alpha_{k}-\alpha_{j}\right)
$$

Main difficulties:

- Δ_{j} can be exponentially small [BM'04]

- Bound for a large class of polynomials

Goal: A large family of irreducible polynomials in $\mathbb{Z}[X]$ with $\left\|\mathbf{V}_{f}^{-1}\right\| \leq \operatorname{poly}(n)$.

Perturbations of a good situation

(1) $f:=X^{n}-c \in \mathbb{Z}[X]$, with $\alpha_{j}=c^{1 / n} \mathrm{e}^{2 i \pi \frac{j}{n}}$.
$\left\|\mathbf{V}_{f}^{-1}\right\|_{\infty}=1$.

Perturbations of a good situation

(1) $f:=X^{n}-c \in \mathbb{Z}[X]$, with $\alpha_{j}=c^{1 / n} \mathrm{e}^{2 i \pi \frac{j}{n}}$.
$\left\|\mathbf{V}_{f}^{-1}\right\|_{\infty}=1$.
(2) Let $P=\sum_{i=1}^{n / 2} p_{i} X^{i} \in \mathbb{Z}[X]$.

Perturbation: $g:=f+P=\prod_{i=1}^{n}\left(X-\beta_{j}\right)$
If " P small", β_{i} 's should stay close to α_{i} 's.

Perturbations of a good situation

(1) $f:=X^{n}-c \in \mathbb{Z}[X]$, with $\alpha_{j}=c^{1 / n} \mathrm{e}^{2 i \pi \frac{j}{n}}$.
$\left\|\mathbf{V}_{f}^{-1}\right\|_{\infty}=1$.
(2) Let $P=\sum_{i=1}^{n / 2} p_{i} X^{i} \in \mathbb{Z}[X]$.

Perturbation: $g:=f+P=\prod_{i=1}^{n}\left(X-\beta_{j}\right)$
If " P small", β_{i} 's should stay close to α_{i} 's.

Theorem (Rouché)

If $|P(z)|<|f(z)|$ on a circle, then f and $f+P$ have the same numbers of zeros inside this circle.

Completing the reduction

Result: We can exhibit exponentially many $f \in \mathbb{Z}[X]$, monic and irreducible, such that $\left\|\mathbf{V}_{f}^{-1}\right\| \leq \operatorname{poly}(n)$.

For any such f, we have in K_{f} :
solving $\mathrm{PLWE}_{q, \Sigma^{\prime}, f} \Rightarrow$ solving $\mathrm{RLWE}_{q, \Sigma}$

Ingredients and tools

Result: We can exhibit exponentially many $f \in \mathbb{Z}[X]$, monic and irreducible, such that $\left\|\mathbf{V}_{f}^{-1}\right\| \leq \operatorname{poly}(n)$.

- Idea: If β_{i} 's are close to α_{i} 's, then $\left\|\mathbf{V}_{g}^{-1}\right\| \sim\left\|\mathbf{V}_{f}^{-1}\right\|$.
- Main difficulty: lower bound on $\left|\Delta_{j}\right|=\prod_{j \neq k}\left|\beta_{k}-\beta_{j}\right|$.

Ingredients and tools

Result: We can exhibit exponentially many $f \in \mathbb{Z}[X]$, monic and irreducible, such that $\left\|\mathbf{V}_{f}^{-1}\right\| \leq \operatorname{poly}(n)$.

- Idea: If β_{i} 's are close to α_{i} 's, then $\left\|\mathbf{V}_{g}^{-1}\right\| \sim\left\|\mathbf{V}_{f}^{-1}\right\|$.
- Main difficulty: lower bound on $\left|\Delta_{j}\right|=\prod_{j \neq k}\left|\beta_{k}-\beta_{j}\right|$.
- Steps:
- Bound $|P(z)|,|f(z)|$ on $D\left(\alpha_{i}, \frac{1}{n}\right) \Rightarrow$ conditions on $c,\|P\|_{1}$.
- Assume conditions are met.

Rouché's theorem implies $\left|\Delta_{j}\right| \geq \Pi(\underbrace{\left|\alpha_{k}-\alpha_{j}\right|}_{\text {well-known }}-\frac{2}{n})$

- Irreducibility when c is a large enough prime

Search to Decision (shortest version)

Given: $(\mathbf{A}, \mathbf{b}=\mathbf{A} \mathbf{s}+\mathrm{e})+$ disting. oracle, find s .

Main steps:

Generate RLWE-like samples using Gaussians

$$
t_{i} \hookleftarrow D_{\sigma, \mathcal{O}_{K}}
$$

Get good approximations of noise in poly time [PRS'17]

Difficulty: Find minimal σ s.t. linear combinations of t_{i} 's look uniform.

Result: Leftover Hash Lemma over number rings.
a_{1}, \ldots, a_{m} : rows of A. Standard dev. $\sigma \geq \widetilde{O}\left(\sqrt{n} \cdot \Delta_{K}^{1 / n} \cdot q^{1 / m}\right)$.
If $t_{i} \hookleftarrow D_{\sigma, \mathcal{O}_{K}}$, then $\sum_{i \leq m} a_{i} t_{i}$ is statistically indistinguishable from uniform.
(1) LWE and Cryptography
(2) Ring-based LWE
(3) Reductions between Ring-based LWE's
(4) Search to Decision
(5) Open problems

Open problems related to this work

(A) Make reductions uniform.
(B) $\left\|V_{f}^{-1}\right\| \leq \widetilde{O}\left(n^{3.5}\right)$ in proof vs. $\left\|V_{f}^{-1}\right\| \sim 1$ in practice. Improvement?
(C) Are there "weaker" fields for ApproxSVP? For Ring-based LWE?

Open Problems

(A) Make reductions uniform.
(B) $\left\|V_{f}^{-1}\right\| \leq \widetilde{O}\left(n^{3.5}\right)$ in proof vs. $\left\|V_{f}^{-1}\right\| \sim 1$ in practice. Improvement?
(C) Are there "weaker" fields for ApproxSVP? For Ring-based LWE?

Thank you :)

