DECOMPOSITION ATTACKS OVER

UNIVERSITEES HYPERELLIPTIC CURVES
Alexandre WALLET ${ }^{1,2,3}$ and Jean-Charles Faugère ${ }^{2,3}$
${ }^{1}$ Université de Lyon, ENSL, CNRS, INRIA, UCBL, UMR 5668, LIP, 69000, Lyon, France ${ }^{2}$ Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7606, LIP6, F-75005, Paris, France ${ }^{3}$ INRIA, équipe PolSys, centre Paris, F-75005, Paris, France

Motivations

- Algorithmic Number Theory
\diamond Computations of discrete logs in abelian varieties in general
\diamond Jacobian varieties of algebraic curves are abelian varieties
- Cryptography: Diffie-Hellman \leq DLP, signature algorithms
\diamond Elliptic curves $=$ abelian varieties of dimension 1
\diamond Transfer attacks: elliptic curves \longrightarrow hyperelliptic curves

How to compute discrete logs ?

X Generic algorithms

\checkmark Index-Calculus algorithms
How "better" are they?

DECOMPOSITION ATTACK

Example over an elliptic curve $E\left(\mathbb{F}_{q^{n}}\right)$:
Given (many) $R \in E\left(\mathbb{F}_{q^{n}}\right)$, find relations as $R=P_{1}+\cdots+P_{n}$.

- summation polynomials \sim project group law on the x-line

$$
\begin{gathered}
P_{1}+P_{2}+P_{3}=0 \\
\text { algebra } \downarrow \quad \uparrow \text { geometry } \\
S_{3}\left(x_{1}, x_{2}, x_{3}\right)=0
\end{gathered}
$$

- restriction of scalars gives polynomial systems

Take factor base $\mathcal{F}=\left\{P \in E\left(\mathbb{F}_{q^{n}}\right): x_{P} \in \mathbb{F}_{q}\right\}$.

$$
\left\{\begin{array} { l }
{ R = P _ { 1 } + \cdots + P _ { n } } \\
{ P _ { i } \in \mathcal { F } }
\end{array} \rightarrow \left\{\begin{array}{lc}
s_{1}\left(X_{1}, \ldots, X_{n}\right)=0 & \text { Solve with } \\
\vdots & \text { Gröbner basis } \\
s_{n}\left(X_{1}, \ldots, X_{n}\right)=0 & \text { computation }
\end{array}\right.\right.
$$

$\rightarrow \begin{cases}X_{1}+Q_{1}\left(X_{n}\right)=0 & \\ \vdots & \rightarrow \\ X_{n-1}+Q_{n-1}\left(X_{n}\right)=0 & \text { - Find roots of } U \text { over } \mathbb{F}_{q} \\ U\left(X_{n}\right)=X_{n}{ }^{D}+\ldots=0 & \\ \text { - Probability }(\text { root }) \sim \frac{1}{n!}\end{cases}$

Contributions

Improvements for decomposition attacks on hyperelliptic curves

- Generalization of summation polynomials:

\diamond Computational definition:

1. Description of $\mathcal{V}_{n, R}=\left\{\left(P_{1}, \ldots, P_{n}\right): \sum P_{i}=R\right\}$
2. Summation polynomials $=$ Gröbner basis of an elimination ideal
\diamond Analysis of geometric and algebraic structure

- Codim $\mathcal{V}_{n, R}=$ genus
- $\operatorname{deg} \mathcal{V}_{n, R}=2^{n-\text { genus }}$
\diamond Exploited in a new decomposition attack over hyperelliptic curves
- In characteristic 2:
\diamond Reduction of D using Frobenius action
- Reduction factor: at least 2^{n-1}, up to $2^{(n-1)(\text { genus+1) }}$
\diamond Decomposition attacks now practical for more parameters
- Harvesting over a meaningful curve

Index Calculus for Jacobian varieties

PoSSo with Gröbner bases

Original System	\longrightarrow	$\begin{gathered} \text { DRL } \\ \text { basis } \\ \text { F4, F5 } \end{gathered}$	\longrightarrow	Change order FGLM	\longrightarrow	Univariate Solving
		Δ : degree of regularity		D: \#solutions in alg. closure		
n variables s equations		$O\left(s\binom{n+\Delta}{\Delta}^{\omega}\right)$		$O\left(n D^{\omega}\right)$		

In

Decomposition $\quad \Delta=\tilde{O}\left(D^{1 / n}\right) \quad D=2^{n(n-1) \text { genus }}$ attacks

Find 1 relation $=O((n \cdot$ genus $)!\times D)$
Reduction: for elliptic curves: [2, 3]; for hyperelliptic curves: this work

Impact of the Reduction

For genus $=2, n=3, D=2^{12}=4096$, reduced degree $D=2^{6}=64$.

- Toy-example for one try:

Fields	Tool	Time for D	Time for D	Ratio
$\mathbb{F}_{2^{45}} \mid \mathbb{F}_{2^{15}}$	Magma 2.19	1500 s	0.029 s	$\mathbf{7 5 0 0 0}$

- Meaningful harvesting: \#target group $\sim 2^{184}$, using 8000 cores:

$$
\begin{array}{c|c|c|c}
\text { Field } & \text { Tool } & \text { old } & \text { this work } \\
\mathbb{F}_{2^{93}} \mid \mathbb{F}_{2^{31}} & \mathrm{C} & \sim \text { (optimized) } & \text { unfeasible }
\end{array}
$$

Linalg: $\sim 2^{56}$ operations: whole algorithm is practical.

References

[1] V. Shoup, Lower bounds for Discrete Logarithms and Related Problem, EUROCRYPT'97.
[2] J.C. Faugère, P. Gaudry, L. Huot, G. Renault, Using symmetries in the Index Calculus for Elliptic Curves Discrete Logarithm, J. of Cryptology, 2014
[3] J.C. Faugère, L. Huot, A. Joux, G. Renault, V. Vitse, Symmetrized Summation Polynomials: using small order torsion point to speed up Elliptic Curve Index Calculus, EUROCRYPT'14.
[4] J.C. Faugère, A. W., The Point Decomposition Problem in Hyperelliptic Curves: toward efficient computations of Discrete Logarithms in even characteristic, in revision. [5] A.W., The point decomposition problem in Jacobian varieties, PhD. thesis.

