

DECOMPOSITION ATTACKS OVER HYPERELLIPTIC CURVES

Alexandre WALLET^{1,2,3} and Jean-Charles Faugère^{2,3}

¹Université de Lyon, ENSL, CNRS, INRIA, UCBL, UMR 5668, LIP, 69000, Lyon, France ²Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7606, LIP6, F-75005, Paris, France ³ INRIA, équipe PolSys, centre Paris, F-75005, Paris, France

ENS DE LYON

MOTIVATIONS

- Algorithmic Number Theory
 - ♦ Computations of discrete logs in abelian varieties in general
 - ♦ Jacobian varieties of algebraic curves are abelian varieties
- Cryptography: Diffie-Hellman \leq DLP, signature algorithms
 - \diamond Elliptic curves = abelian varieties of dimension 1

 \diamond Transfer attacks: elliptic curves \longrightarrow hyperelliptic curves

How to compute discrete logs ?

X Generic algorithms Exponential at best [1]. ✓ Index-Calculus algorithms How "better" are they ?

X3

DECOMPOSITION ATTACK

Example over an elliptic curve $E(\mathbb{F}_{q^n})$: Given (many) $R \in E(\mathbb{F}_{q^n})$, find relations as $R = P_1 + \cdots + P_n$.

 \bullet summation polynomials \sim project group law on the x-line

 $P_1 + P_2 + P_3 = 0$ algebra $\downarrow \uparrow$ geometry $S_3(x_1, x_2, x_3) = 0$

• restriction of scalars gives polynomial systems Take factor base $\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : x_P \in \mathbb{F}_q \}.$

n variables s equations

$$O(n\boldsymbol{D}^{\omega})$$

In Decomposition attacks

$$\Delta = ilde{O}(D^{1/n})$$
 $D = 2^{n(n-1)}$ genus

Find 1 relation = $O((n \cdot \text{genus})! \times D)$

 $O(s\binom{n+\Delta}{\Delta}^{\omega})$

Reduction: for elliptic curves: [2, 3]; for hyperelliptic curves: <u>this work</u>

CONTRIBUTIONS

Improvements for decomposition attacks on hyperelliptic curves

- Generalization of summation polynomials:
 - ♦ Computational definition:

1. Description of $\mathcal{V}_{n,R} = \{(P_1, \dots, P_n) : \sum P_i = R\}$

2. Summation polynomials = Gröbner basis of an elimination ideal

IMPACT OF THE REDUCTION

For genus = 2,
$$n = 3$$
, $D = 2^{12} = 4096$, reduced degree $D = 2^6 = 64$.

• Toy-example for one try:

FieldsToolTime for DTime for DRatio $\mathbb{F}_{2^{45}} | \mathbb{F}_{2^{15}}$ Magma 2.191500s0.029s75000

• Meaningful harvesting: #target group $\sim 2^{184}$, using 8000 cores: Field | Tool | old | this work

♦ Analysis of geometric and algebraic structure

• Codim $\mathcal{V}_{n,R}$ = genus • deg $\mathcal{V}_{n,R}$ = 2^{*n*-genus}

♦ Exploited in a new decomposition attack over hyperelliptic curves

• In characteristic 2:

- \diamond Reduction of D using Frobenius action
 - Reduction factor: at least 2^{n-1} , up to $2^{(n-1)(\text{genus}+1)}$
- ♦ Decomposition attacks now practical for more parameters
 - Harvesting over a meaningful curve

$$\mathbb{F}_{2^{93}} | \mathbb{F}_{2^{31}} \begin{vmatrix} C \\ (\text{optimized}) \end{vmatrix} \sim \begin{array}{l} \sim 30 \text{ years} \\ \text{unfeasible} \end{vmatrix} \sim 7 \text{ days} \\ \text{practical} \end{vmatrix}$$

Linalg: $\sim 2^{56}$ operations: whole algorithm is practical.

References

[1] V. Shoup, Lower bounds for Discrete Logarithms and Related Problem, EURO-CRYPT'97.

[2] J.C. Faugère, P. Gaudry, L. Huot, G. Renault, Using symmetries in the Index Calculus for Elliptic Curves Discrete Logarithm, J. of Cryptology, 2014
[3] J.C. Faugère, L. Huot, A. Joux, G. Renault, V. Vitse, Symmetrized Summation Polynomials: using small order torsion point to speed up Elliptic Curve Index Calculus, EUROCRYPT'14.

[4] J.C. Faugère, A. W., The Point Decomposition Problem in Hyperelliptic Curves: toward efficient computations of Discrete Logarithms in even characteristic, in revision.
[5] A.W., The point decomposition problem in Jacobian varieties, PhD. thesis.