Mod-NTRU trapdoors and applications

Alexandre Wallet

Lattices: From Theory to Practice

Simons Institute, 29/04/2020
Based on a joint work with Chitchanok Chuengsatiansup, Thomas Prest,
Damien Stehlé and Keita Xagawa, ePrint 2019/1456

Today's talk

A larger class of almost "optimal" trapdoors from NTRU modules

Known applications: (not detailed today)
(A) New meaningful security/efficiency trade-offs for GPV signatures Acceptably efficient PKE/KEM à la NTRUEncrypt
(B) Extension of [DLP'14]'s IBE
(A) see our article (B) Cheon, Kim, Kim, and Son, ePrint 2019/1468

Roadmap

(1) Lattice trapdoors, NTRU lattices
(2) Hard NTRU lattices with half-trapdoors
(3) Completing the trapdoor, application to signatures

Lattice trapdoors

$$
\begin{gathered}
\text { Parity-check lattices } \\
\text { For } \mathbf{A} \in \mathbb{Z}^{m \times n} \text { and } q \in \mathbb{Z} \\
\Lambda_{q}^{\perp}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{Z}^{m}: \mathbf{x A}=\mathbf{0} \bmod q\right\} .
\end{gathered}
$$

[Ajt'96] $\left(\Lambda_{q}^{\perp}(\mathbf{A})\right)_{\mathbf{A}}$ are "hard lattices": for $\mathbf{A} \leftarrow \mathcal{U}\left(\mathbb{Z}_{q}^{m \times n}\right), \operatorname{SIS}_{m, q} \geq \operatorname{SIVP}_{\text {poly }(n)}$

A trapdoor is a short basis \mathbf{B} of $\Lambda_{q}^{\perp}(\mathbf{A})$.

$$
\left(\|\mathbf{B}\|_{\max }:=\max _{i}\left\|\mathbf{b}_{i}\right\| \text { is small }\right)
$$

$$
\mathbf{B} \quad \mathbf{A}=0 \bmod q
$$

What is "optimal"? $\|\widetilde{\mathbf{B}}\|_{\max } \approx \operatorname{Vol}\left(\Lambda_{q}^{\perp}(\mathbf{A})\right)^{1 / m}$, where $\widetilde{\mathbf{B}}=\operatorname{GSO}(\mathbf{B})$.

Canonical example: GPV signatures

If \mathbf{B} is basis of $\Lambda_{q}^{\perp}(\mathbf{A})$, then $\mathbf{B A}=\mathbf{0} \bmod q$

Simplified $\operatorname{Sign}_{\mathrm{B}}$ (msg) :

- c such that $\mathbf{c A}=\mathcal{H}(\mathrm{msg})$
- $\mathbf{v} \leftarrow D_{\mathcal{L}(\mathbf{B}), \mathbf{c}, \sigma}$ with TheSampler ${ }^{\dagger}$
- Signature: $\mathbf{s}=\mathbf{c}-\mathbf{v}$.

Simplified $\operatorname{Verif}_{\mathrm{A}}(\mathrm{msg}, \mathbf{s})$:

- If $\|\mathbf{s}\|$ too big, refuse.
- If $\mathbf{s A} \neq \mathcal{H}(\mathrm{msg})$, refuse.
- Accept.

Requirements

$$
\sigma \text { small } \Rightarrow \widetilde{\mathbf{B}} \text { short }
$$

Hard to compute \mathbf{B} from A

Easy to generate (\mathbf{A}, \mathbf{B})

B Gaussian of std.dev. $\sigma \Rightarrow\|\mathbf{s}\| \approx \sigma \sqrt{m}$ Want n and q s.t. $\mathrm{SIS}_{m, q, \sigma \sqrt{m}}$ is hard

Method determines $m=m(n, q)$.

Development of lattice trapdoors

Algorithms to generate trapdoored hard lattices:

- [Ajt'99] \mathbf{A} hard and $\|\mathbf{B}\|_{\max }=O\left(m^{5 / 2}\right)$.

$$
\widetilde{\mathbf{B}}=\mathrm{GSO}(\mathbf{B})
$$

\times optimal
\times practical

- [AP'09] A hard, $m=\Omega(n \log q)$
$\|\widetilde{\mathbf{B}}\|_{\max }=O(\sqrt{n \log q})$
\checkmark optimal
\times practical

Development of lattice trapdoors

Algorithms to generate trapdoored hard lattices:

- [Ajt'99] \mathbf{A} hard and $\|\mathbf{B}\|_{\max }=O\left(m^{5 / 2}\right)$.
$\widetilde{\mathbf{B}}=\mathrm{GSO}(\mathbf{B})$
\times optimal
\times practical
- [AP'09] A hard, $m=\Omega(n \log q)$
$\|\widetilde{\mathbf{B}}\|_{\text {max }}=O(\sqrt{n \log q})$
\checkmark optimal
\times practical
- [MP'12] Meaningful improvements But still $\|\widetilde{\mathbf{B}}\|=O(\sqrt{n \log q})$

Development of lattice trapdoors

Algorithms to generate trapdoored hard lattices:

- [Ajt'99] \mathbf{A} hard and $\|\mathbf{B}\|_{\max }=O\left(m^{5 / 2}\right)$.
$\widetilde{\mathbf{B}}=\operatorname{GSO}(\mathbf{B})$
\times optimal
\times practical
- [AP'09] A hard, $m=\Omega(n \log q)$
$\|\widetilde{\mathbf{B}}\|_{\max }=O(\sqrt{n \log q})$
\checkmark optimal
\times practical
- [MP'12] Meaningful improvements But still $\|\widetilde{\mathbf{B}}\|=O(\sqrt{n \log q})$
getting there!
- [DLP'14] A an NTRU lattice, $m=2 n$
$\|\widetilde{\mathbf{B}}\|_{\text {max }} \approx \sqrt{q}$
\checkmark optimal
\checkmark practical
- Today: A an NTRU lattice, $m=c n$ $\|\widetilde{\mathbf{B}}\|_{\text {max }} \approx q^{\frac{1}{c}}$.

NTRU modules

$$
\begin{array}{cc}
R=\mathbb{Z}[X] /(\phi), \operatorname{deg} \phi=n, \text { irreducible. } & f=\sum_{i} f_{i} X^{i} \\
q \text { a prime } & \left(f_{0}, \ldots, f_{n-1}\right) \text { or } \mathrm{T}(f) \text { multiplication matrix }
\end{array}
$$

$\mathbf{F} \in R^{m \times m}$ invertible $\bmod q, \mathbf{G} \in R^{m \times k}$

$$
\mathbf{H}=\left.\mathbf{F}^{-1} \mathbf{G}\right|^{m \bmod q}
$$

NTRU modules

$$
\begin{array}{cc}
R=\mathbb{Z}[X] /(\phi), \operatorname{deg} \phi=n, \text { irreducible. } & f=\sum_{i} f_{i} X^{i} \\
q \text { a prime } & \left(f_{0}, \ldots, f_{n-1}\right) \text { or } \mathrm{T}(f) \text { multiplication matrix }
\end{array}
$$

$\mathbf{F} \in R^{m \times m}$ invertible $\bmod q, \mathbf{G} \in R^{m \times k}$

$$
\mathcal{L}_{\mathrm{NTRU}}^{m, k}:=\Lambda_{q}^{\perp}\left(\left[\mathbf{H} \mid-\mathbf{I}_{k}\right]\right)=\left\{(\mathbf{u}, \mathbf{v}) \in R^{(m+k)}: \mathbf{u H}-\mathbf{v}=\mathbf{0} \bmod q\right\}
$$

(full) rank $(m+k) n$ lattice with volume $q^{k n}$
easy (public) basis:

Minima, covering radius, smoothing parameter all are $\approx q^{k /(m+k)}$

Use of NTRU modules

Non exhaustive; all of these are for $m=k=1$

PKE/KEM:

- NTRUEncrypt [HPS'98]
- NTRUEnc-HRSS [HH+'17]
- NTRUPrime [BCLV'17]

Signatures:

- NTRUSign [HHS+'03]
- Falcon (from [DLP'14] from [GPV'08])
- BLISS [DDLL'13]

Advanced:

- HE [LTV'12]
- Multilinear maps [GGH'13]
- IBE [DLP'14]

Where are we?

(1) Lattice trapdoors, NTRU lattices
(2) Hard NTRU lattices with half-trapdoors

- Trapdoor generation, a starter
- Hardness of trapdoored NTRU

(3) Completing the trapdoor, application to signatures

How to generate a useful NTRU module

Trapdoor basis $\mathbf{B}=\left[\begin{array}{ll}\mathbf{F} & \mathbf{G} \\ * & *\end{array}\right]$ should give us $\|\widetilde{\mathrm{T}}(\mathbf{B})\|_{\max } \approx q^{k /(m+k)}$

Lemma: If $\mathbf{B}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{m+k}\right]$, then:

$$
\|\widetilde{\mathbf{T}}(\mathbf{B})\|_{\max }=\max _{i}\left\{\left\|\widetilde{\mathbf{b}}_{1}\right\|, \ldots,\left\|\widetilde{\mathbf{b}}_{m+k}\right\|\right\} \geq q^{k /(m+k)}
$$

A starter: take $s \approx q^{k /(m+k)}$

1) Sample $\mathbf{b}_{i} \leftarrow D_{R, s}^{m+k}$ for $1 \leq i \leq m$
2) Parse as $\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right]=[\mathbf{F} \mid \mathbf{G}]$; restart if \mathbf{F} not invertible $\bmod q$

How to generate a useful NTRU module

Trapdoor basis $\mathbf{B}=\left[\begin{array}{ll}\mathbf{F} & \mathbf{G} \\ * & *\end{array}\right]$ should give us $\|\widetilde{\mathrm{T}}(\mathbf{B})\|_{\max } \approx q^{k /(m+k)}$

Lemma: If $\mathbf{B}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{m+k}\right]$, then:

$$
\|\widetilde{\mathrm{T}}(\mathbf{B})\|_{\max }=\max _{i}\left\{\left\|\widetilde{\mathbf{b}}_{1}\right\|, \ldots,\left\|\widetilde{\mathbf{b}}_{m+k}\right\|\right\} \geq q^{k /(m+k)}
$$

A starter: take $s \approx q^{k /(m+k)}$

1) Sample $\mathbf{b}_{i} \leftarrow D_{R, s}^{m+k}$ for $1 \leq i \leq m$
2) Parse as $\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right]=[\mathbf{F} \mid \mathbf{G}]$; restart if \mathbf{F} not invertible $\bmod q$

Caveat: orthogonal projections shrink vectors by some factor γ_{i} $\Rightarrow \mathbf{b}_{1}$ will be maximal, completion of basis will compensate.

How to generate a useful NTRU module

Trapdoor basis $\mathbf{B}=\left[\begin{array}{ll}\mathbf{F} & \mathbf{G} \\ * & *\end{array}\right]$ should give us $\|\widetilde{\mathrm{T}}(\mathbf{B})\|_{\max } \approx q^{k /(m+k)}$

Lemma: If $\mathbf{B}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{m+k}\right]$, then:

$$
\|\widetilde{\mathrm{T}}(\mathbf{B})\|_{\max }=\max _{i}\left\{\left\|\widetilde{\mathbf{b}}_{1}\right\|, \ldots,\left\|\widetilde{\mathbf{b}}_{m+k}\right\|\right\} \geq q^{k /(m+k)}
$$

A better start: set $s_{i} \approx \gamma_{i} \cdot q^{k /(m+k)}$

1) Sample $\mathbf{b}_{i} \leftarrow D_{R, s_{i}}^{m+k}$ for $1 \leq i \leq m$
2) Parse as $\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right]=[\mathbf{F} \mid \mathbf{G}]$; restart if \mathbf{F} not invertible $\bmod q$ Output a half-trapdoor for $\mathbf{H}=\mathbf{F}^{-1} \mathbf{G} \bmod q$.

Remaining problems:

- Is $\Lambda_{q}^{\perp}(\mathbf{H})$ a hard lattice ?
- How to complete the basis?
- Will the completion be nice?

How hard are trapdoored NTRU lattices?

"NTRU assumption"

Computational
Hard to compute \mathbf{F}, \mathbf{G} from \mathbf{H}
Well, if not, it's not a trapdoor...

Decisional
Hard to distinguish \mathbf{H} from $\mathcal{U}\left(R_{q}^{m \times k}\right)$ Needed for $\Lambda_{q}^{\perp}(\mathbf{H})$ to be "hard"

Call \mathcal{E}_{s} the distribution of $\mathbf{H}=\mathbf{F}^{-1} \mathbf{G} \bmod q$

How hard are trapdoored NTRU lattices?

"NTRU assumption"

Computational Hard to compute \mathbf{F}, \mathbf{G} from \mathbf{H}

Well, if not, it's not a trapdoor...

Decisional
Hard to distinguish \mathbf{H} from $\mathcal{U}\left(R_{q}^{m \times k}\right)$ Needed for $\Lambda_{q}^{\perp}(\mathbf{H})$ to be "hard"

$$
\text { Call } \mathcal{E}_{s} \text { the distribution of } \mathbf{H}=\mathbf{F}^{-1} \mathbf{G} \bmod q
$$

New result: $\Phi=X^{n}+1, n$ a power of two, $q \equiv 3 \bmod 8$, for $3 k \geq m \geq 1$

$$
\text { When } s \geq \widetilde{O}\left(n \cdot q^{\frac{k}{m+k}}\right) \text {, then } \mathcal{E}_{s} \approx \mathcal{U}\left(R_{q}^{m \times k}\right)
$$

[SS'11] for $m=k=1$, the result hold for all q.

Strongly supports hardness of the trapdoored NTRU lattices

On the uniformity of the public basis

New result: $\Phi=X^{n}+1, n$ a power of two, $q \equiv 3 \bmod 8$, for $3 k \geq m \geq 1$, when $s \geq \widetilde{O}\left(n \cdot q^{\frac{k}{m+k}}\right)$, then $\mathcal{E}_{s} \approx \mathcal{U}\left(R_{q}^{m \times k}\right)$

Intermediate useful result:
if $q=\mathfrak{p}_{1} \ldots \mathfrak{p}_{r}$, when $s \geq \widetilde{O}\left(n \cdot q^{\frac{1}{2 r}}\right)$, then $\mathbb{P}_{\mathbf{F} \leftarrow D_{R, s}^{m \times m}}[\mathbf{F}$ invertible $\bmod q] \geq 1-\frac{4 n}{q^{n / r}}$

On the uniformity of the public basis

New result: $\Phi=X^{n}+1, n$ a power of two, $q \equiv 3 \bmod 8$, for $3 k \geq m \geq 1$, when $s \geq \widetilde{O}\left(n \cdot q^{\frac{k}{m+k}}\right)$, then $\mathcal{E}_{s} \approx \mathcal{U}\left(R_{q}^{m \times k}\right)$

Intermediate useful result:

$$
\text { if } \left.q=\mathfrak{p}_{1} \ldots \mathfrak{p}_{r} \text {, when } s \geq \widetilde{O}\left(n \cdot q^{\frac{1}{2 r}}\right) \text {, then } \mathbb{P}_{\mathbf{F} \leftarrow D_{R, s}^{m \times m}}^{m \times r} \text { invertible } \bmod q\right] \geq 1-\frac{4 n}{q^{n / r}}
$$

Proof ideas/tools:

- Inspired of [SS'11] and [LPR'13]
- Involve module "multi-lattices" (additive subgroups of $\mathcal{M}_{m}(R)$, see also [BF'11])
- $\{\operatorname{Mod} q$ invertibles $\}$ is not a lattice; our strategy to describe it:
inclusion/exclusion over *all* lattices containing $q \mathcal{M}_{m}(R)$
(They correspond to *all* r-uples of subspaces of $\left.\left(\mathbb{F}_{q^{n / r}}\right)^{m}\right)$

(1) Lattice trapdoors, NTRU lattices

(2) Hard NTRU lattices with half-trapdoors

- Trapdoor generation, a starter
- Hardness of trapdoored NTRU
(3) Completing the trapdoor, application to signatures

Generating a somewhat short basis ${ }^{1}$

From now on, $k=1$ and $m \geq 1$.

$$
\mathbf{h}=\mathbf{F}^{-1} \mathbf{g} \mathbf{g}_{m} \bmod q \quad \text { with }[\mathbf{F} \mid \mathbf{g}]=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right] \text { and } \mathbf{b}_{i} \leftarrow D_{R, s_{i}}^{m+1}
$$

Now, need $\left(\mathbf{f}^{\prime}, g^{\prime}\right) \in R^{m+1}$ such that

$$
D:=\operatorname{det}\left[\begin{array}{cc}
\mathbf{F} & \mathbf{g} \\
\mathbf{f}^{\prime} & g^{\prime}
\end{array}\right]=q
$$

Generating a somewhat short basis ${ }^{1}$

From now on, $k=1$ and $m \geq 1$.

$$
\mathbf{h}=\mathbf{F}^{-1} \mathbf{g}{ }_{m} \bmod q \quad \text { with }[\mathbf{F} \mid \mathbf{g}]=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right] \text { and } \mathbf{b}_{i} \leftarrow D_{R, s_{i}}^{m+1}
$$

Now, need $\left(\mathbf{f}^{\prime}, g^{\prime}\right) \in R^{m+1}$ such that

$$
D:=\operatorname{det}\left[\begin{array}{cc}
\mathbf{F} & \mathbf{g} \\
\mathbf{f}^{\prime} & g^{\prime}
\end{array}\right]=q
$$

With Shur's complement and $\operatorname{adj}(\mathbf{F})=\operatorname{det}(\mathbf{F}) \cdot \mathbf{F}^{-1} \in R^{m \times m}$:

$$
D=\operatorname{det}(\mathbf{F}) \cdot \operatorname{det}\left(g^{\prime}-\mathbf{f}^{\prime} \cdot \mathbf{F}^{-1} \cdot \mathbf{g}\right)
$$

$$
=g^{\prime} \cdot \underbrace{\operatorname{det}(\mathbf{F})}_{\substack{\text { known } \\ \in R}}-\mathbf{f}^{\prime} \cdot \underbrace{\operatorname{adj}(\mathbf{F}) \mathbf{g}}_{\substack{\text { known } \\ \in R^{m}}}
$$

Take $\mathbf{f}^{\prime}=\left(\ldots, 0, f_{i}^{\prime}, 0, \ldots\right) \Rightarrow$ back to solving an NTRU equation (remember Thomas' talk)
${ }^{1}$ For another approach, see Cheon et al. ePrint 2019/1468

Almost optimal trapdoors

$$
\text { Last problem: how large is } \mathbf{b}_{m+1}=\left(\mathbf{f}^{\prime}, g^{\prime}\right) \text { ? }
$$

Fact 1: $\left\|\widetilde{\mathbf{b}}_{m+1}\right\| \geq \frac{q}{\prod_{i}\left\|\widetilde{\mathbf{b}}_{i}\right\|}$

$$
\begin{gathered}
\text { Since all }\left\|\widetilde{\mathbf{b}_{i}}\right\| \text { 's are about } q^{1 /(m+1)}, \\
\left\|\widetilde{\mathbf{b}}_{m+1}\right\| \text { should be, too. }
\end{gathered}
$$

Fact 2: $\left\|\widetilde{\mathbf{b}}_{m+1}\right\|$ computable from $\widetilde{\mathbf{b}}_{1}, \ldots, \widetilde{\mathbf{b}}_{m}$ without knowing \mathbf{b}_{m+1}

Almost optimal trapdoors

Last problem: how large is $\mathbf{b}_{m+1}=\left(\mathbf{f}^{\prime}, g^{\prime}\right)$?
Fact 1: $\left\|\widetilde{\mathbf{b}}_{m+1}\right\| \geq \frac{q}{\prod_{i}\left\|\widetilde{\mathbf{b}}_{i}\right\|}$

$$
\begin{gathered}
\text { Since all }\left\|\widetilde{\mathbf{b}_{i}}\right\| \text { 's are about } q^{1 /(m+1)}, \\
\left\|\widetilde{\mathbf{b}}_{m+1}\right\| \text { should be, too. }
\end{gathered}
$$

Fact 2: $\left\|\widetilde{\mathbf{b}}_{m+1}\right\|$ computable from $\widetilde{\mathbf{b}}_{1}, \ldots, \widetilde{\mathbf{b}}_{m}$ without knowing \mathbf{b}_{m+1}
Finishing the trapdoor generation:

1) for $1 \leq i \leq m$, resample any vector that is too far from $q^{1 /(m+1)}$
2) Compute $\left\|\widetilde{\mathbf{b}}_{m+1}\right\|$, restart if too large
3) Compute \mathbf{b}_{m+1} and output (\mathbf{H}, \mathbf{B}).

$$
\left\|\mathbf{b}_{i}\right\| \text { 's close to } \lambda_{i} \text { 's, }\|\widetilde{\mathrm{T}}(\mathbf{B})\|_{\max } \text { close to } \eta_{\epsilon}\left(\Lambda_{q}^{\perp}(\mathbf{H})\right)
$$

These trapdoors are almost optimal.

A practical application: Mod-Falcon ${ }^{2}$

| | m | n | \||s\| | Qsec | Minimizing \|sig| | | Minimizing \mid sig $\|+\|v k\|$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Falcon-512 | 1 | 512 | 6598 | 109 | 897 | 658 | 28 | 1276 |
| Falcon-1024 | 1 | 1024 | 9331 | 252 | 1793 | 1274 | 63 | 2508 |
| Mod-Falcon | 2 | 512 | 1512 | 174 | 1792 | 972 | 940 | 1438 |

security/efficiency trade-off for Falcon

${ }^{2}$ To appear at AsiaCCS 2020; all size expressed in bytes

A practical application: Mod-Falcon ${ }^{2}$

| | m | n | $\\|\mathrm{s}\\|$ | Qsec | Minimizing \mid sig \mid | | Minimizing \mid sig $\|+\|v k\|$ | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | \|vk| | \|sig| | \|vk| | \mid sig\| |
| Falcon-512 | 1 | 512 | 6598 | 109 | 897 | 658 | 28 | 1276 |
| Falcon-1024 | 1 | 1024 | 9331 | 252 | 1793 | 1274 | 63 | 2508 |
| Mod-Falcon | 2 | 512 | 1512 | 174 | 1792 | 972 | 940 | 1438 |

security/efficiency trade-off for Falcon

	\mid vk \mid	\mid sig \mid	Qsec
dilithium-III	1472	2701	125
qTesla-p-I	14880	2592	140
dilithium-IV	1760	3366	158
Mod-Falcon	1792	972	174
	940	1438	

more compact
for equivalent security

[^0]
Food for thoughts

Question 1: We have almost optimal trapdoors for $\mathbf{h}=\mathbf{F}^{-1} \mathbf{g}$
Can this be extended to almost optimal trapdoors for $\mathbf{H}=\mathbf{F}^{-1} \mathbf{G}$?
(main problem: how to complete the basis?)
Question 2: We can use them for signature/IBE.
Can we use these new trapdoors for something else?
Can half-trapdoors' usefulness be improved too?
Question 3: Extend uniformity results to all q 's
And to more fields (Galois, all?)
Generally, find new tools/techniques to compute Gaussian mass of subsets
Also, related to repartition of algebraic numbers

Food for thoughts

Question 1: We have almost optimal trapdoors for $\mathbf{h}=\mathbf{F}^{-1} \mathbf{g}$
Can this be extended to almost optimal trapdoors for $\mathbf{H}=\mathbf{F}^{-1} \mathbf{G}$?
(main problem: how to complete the basis?)
Question 2: We can use them for signature/IBE.
Can we use these new trapdoors for something else?
Can half-trapdoors' usefulness be improved too?
Question 3: Extend uniformity results to all q 's
And to more fields (Galois, all?)
Generally, find new tools/techniques to compute Gaussian mass of subsets
Also, related to repartition of algebraic numbers
Thank you!

[^0]: ${ }^{2}$ To appear at AsiaCCS 2020; all size expressed in bytes

