RÉSEAUX EUCLIDIENS EN CRYPTOGRAPHIE 2023 – TD 3

ALEXANDRE WALLET, QUYEN NGUYEN

Le but de ce TD est d'étudier des algorithmes pour résoudre γ -CVP \square : Soit $\mathcal{L} = \mathcal{L}(\mathbf{B}) \subset \mathbb{R}^m$ un réseau, et $t \in \mathbb{R}^m$. Trouver $v \in \mathcal{L}$ tel que $||v - t|| \leq \gamma \cdot d(t, \mathcal{L})$.

Exercice 1. (1) Montrer comment résoudre 1-CVP si \mathcal{L} est de rang 1.

- (2) On appelle arrondi de t le vecteur $s = \mathbf{B}\lceil \mathbf{B}^{-1}t \rfloor$, où $\lceil \cdot \rfloor$ désigne l'entier le plus proche (pris coordonnée par coordonnée). Montrer que $||t s|| \leq \frac{n}{2} \cdot \max ||b_i||$, où les b_i sont les colonnes de \mathbf{B} .
- (3) Si les b_i sont de plus orthogonaux deux à deux, montrer que l'arrondi est le plus proche vecteur de t dans \mathcal{L} .

Exercice 2. Voici l'algorithme *Nearest Plane*, attribué à Babai. On donne à gauche une version récursive utilisant le fait qu'on sait résoudre CVP en dimension 1, et à droite une version itérative, équivalente. Si b_1, \ldots, b_n est une base du réseau considéré, on notera $V_i = \text{Vect}_{\mathbb{R}}(b_1, \ldots, b_i)$ et b_i^* les orthogonalisés de Gram-Schmidt correspondants.

Nearest Plane:

Entrées : (b_1, \ldots, b_n) une base de \mathcal{L} , $t \in \mathbb{R}^n$ Sortie : $s \in \mathcal{L}$ "proche" de t.

- (1) Projeter t sur t' dans l'espace ambiant de \mathcal{L} ;
- (2) Si on est en dimension 1, renvoyer le plus proche vecteur de t'; Sinon, trouver $V_{n-1} + y$, avec $y \in \mathcal{L}$, le plus proche de t':
- (3) Se ramener "dans un réseau" : $t' \leftarrow t' y$;
- (4) Rappeler sur t' et b_1, \ldots, b_{n-1} , ceci donne s';
- (5) On corrige la translation : renvoyer s' + y;

- (1) $s \leftarrow 0, e_{n+1} \leftarrow t$;
- (2) Pour i = n à 1, faire: $c_i \leftarrow \lceil \frac{\langle e_{i+1}, b_i^* \rangle}{\|b_i^*\|^2} \rfloor;$ $-s \leftarrow s + c_i b_i;$ $-e_i \leftarrow e_{i+1} - c_i b_i;$
- (3) Renvoyer s

L'exercice est d'abord de comprendre le comportement de l'algorithme, puis de démontrer que combiné à LLL, il permet de résoudre $2^{O(n)}$ -CVP.

- (1) Fixons $i \geq 1$, et supposons $t \in V_{i+1}$. Si $y = \lceil t_{i+1} \rfloor b_{i+1}$, montrer que $V_i + y$ est l'hyperplan affine de V_{i+1} le plus proche de t parmi les translatés de t par des vecteurs du réseau.
- (2) Lorsqu'on n'est pas en dimension 1, que peut-il se passer à l'étape (2) de la version récursive? Indication: Raisonner sur l'emplacement du plus proche vecteur $u \in \mathcal{L}$ de t par rapport à l'hyperplan de la question précédente.
- (3) Supposons que $u \notin V_i + y$. Montrer qu'à cette étape, on a alors $||t u|| \ge ||b_{i+1}^*||/2$.
- (4) On suppose maintenant $u \in V_i + y$. Montrer qu'on peut se ramener à une autre instance du problème CVP, mais en dimension i.

On va maintenant quantifier les distances.

- 1. Pour Closest Vector Problem, comme vu en cours.
- 2. C'est de là que vient son nom.

(5) Monter que Nearest Plane renvoie s tel que $||t-s||^2 \leq \frac{1}{4} \sum_i ||b_i^*||^2$. Indication : à l'aide de la version itérative, montrer que $e := t - s \in \{\sum_i x_i b_i^* : |x_i| \leq \frac{1}{2}\}$.

Comme LLL s'exécute en temps polynomial, on peut supposer que b_1, \ldots, b_n est LLL-réduite car ceci n'influe pas sur la classe de complexité du problème CVP.

- (6) Montrer dans ce cas que si $t \in V_{i+1}$, alors le s renvoyé par Nearest Plane appelé dans V_{i+1} satisfait $||t-s|| \le 2^{(i-1)/2} ||b_{i+1}^*||$.
- (7) Reprendre la question (3), en déduire que si l'algorithme ne prend pas le bon hyperplan dans V_{i+1} , alors $||t-s|| \leq 2^{(i+1)/2} \cdot d(t,\mathcal{L})$.
- (8) Conclure en procédant par récurrence.